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Introduction

Introduction

» Last week we introduced the idea of Qubits

» Qubits can exist in a linear superposition of the classical base
states |0) and |1).

Eg [¢) =al0)+5]1)

with o, 3 € C

and the normalisation constraint that |a|? + |8]? =1

vV v v Yy

We can think of the state of a qubit as a point on the Bloch
sphere

» Unitary operations on single qubits correspond to rotations on
the Bloch sphere
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Introduction

Introduction

» We also looked at the EPR experiment and how locality
doesn’t hold in Quantum Mechanics

» We shall look at this today in terms of Quantum Computation
» How multiple qubits can become Entangled...

» meaning the state of a qubit can depend on the states of
other qubits

» We'll then go on to look at implementing the EPR experiment

in QIO
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Measurement
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Measurement

» To understand entanglement, it is important to understand
measurement

» For a single qubit, we know that measurement collapses a
qubit into one of its base states, |0) or |1)
» We also know that the probability of measuring either base
state is related to the amplitude of that state
» E.g. for an arbitrary state [¢)) = «|0) + 3|1):
» The probability of measuring |0) is |a?
» The probability of measuring |1) is |3|?

» Lets try some examples...
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Measurement Examples

» The state |[+) = f |0) + ﬁ 1)

» will measure to |0) with probability 1

1

» will measure to |1) with probability 5

» The state |—) = f |0) — 12 1)

» will measure to |0) with probability %

» will measure to |1) with probability 5
» The state 3 |0) — ?i 1)

» will measure to |0) with probability é

» will measure to |1) with probability 3

» But, what happens when we have more than one qubit?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Multiple qubit states

» How can we describe multiple qubit states?

» How did we represent multiple bit states when we looked at
Dirac notation with classical reversible computation?

» Classically, multiple bit states correspond to bit strings in a
single Ket structure

E.g. two bits can be any of the states |00), |01), |10) or |11)
and a tensor product is implicit in this notation

E.g. we write |10) for the state |1) ® |0)

How does this extend to qubits?

vV v v Y
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Multiple qubit states

» A two-qubit state can appear in a linear superposition of all
four of the classical two-bit states

» E.g. An arbitrary two-qubit state
|) = «]00) + 3 ]01) + v |10) 4+ 6 |11)
> with o, 3,7, € C

» and the normalisation constraint: |a|? + |32 + [v> + |§]> =1
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Tensor product

>
>
>
>

We can still build up states using the tensor product
E.g. [01) =1]0) ®|1)
or [+-) = (2510) + L[1) @ (%10 — L[1))
and we can use the distributivity laws of tensor product and
addition to simplify this:
>t w)aw=(vew)+(new)
v (wmtw)=(vew)+ (ve w)
+-) = 100) — [01) + } 110} - } 1)

v
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Multiple qubit states

» This extends to n-qubit states (for any n € N)

» Classically an n-bit state can be in any of 2" states

» An n-qubit state is described by a linear superposition of all
the 2" classical states

» With complex amplitudes and the normalisation condition as
before

» What about measurement?
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Measuring multiple qubits

» The amplitudes still correspond to the probability of
measuring each classical base state

» E.g. for an arbitrary two-qubit state

|) = «]00) + 5 ]01) + v |10) 4+ & |11)
The probability of measuring |00) is ||?
The probability of measuring |01) is | 3|2
The probability of measuring |10) is |v|?
The probability of measuring |11) is |5/

v vy VvYy

» But the qubits are separate entities...

» We don’t have to measure them both
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Individual Measurements

» What if we have an arbitrary two-qubit state and only want to
measure the first qubit?

> |¢) = «a|00) + £]01) 4+ ~|10) + 4 |11)
» Measuring a single qubit collapses the overall state into a

superposition of all the states in which it is in the measured
state

» The probability of measuring each base state is the sum of the
probabilities of each state in which it is that base state
» E.g. for the arbitrary two-qubit state above
» The probability of measuring the first qubit as |0) is |a|? + | 3|2
and the overall state collapses to o’ |00) + 3’ |01)
The probability of measuring the first qubit as [1) is |y|? + |]?
and the overall state collapses to 7' [10) + ¢’ |11)

v

v

v
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» Where o/, 3’ and +', ¢’ are re-normalised:

o = a ﬂl _ 8
Vlel+6[? Vle2+|6?

/

SR N
R/ e

!/

b
VInP+ISP

» We can generalise this for n-qubit systems

» and measuring any m < n qubits
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Measurement example

» The state 3 |00) + 2 |01) + 2 |10) + 3 [11) is in an equal
superposition
» What happens if we measure the first qubit?

» We measure |0) with probability 3

» and the remaining state collapses to f |0) + \@ 1)

» We measure |1) with probability 3

> and the remaining state also collapses to f |0) + ﬁ 1)

» We could have predicted this, as this state can be written in
terms of each of its constituent qubits

» 1100) + 3 |01) i y1o> : |11Z =

1

(L10)+ L& (0)+ L
» This is not always the case...

)
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Entanglement
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Entanglement

1 1 ;
> The state |00) + 5 [11) is an entangled state
» What does this mean?
» What happens if we measure the first qubit?
> We get |0) with probability %
» and the remaining state collapses to |00)
» We get |1) with probability %
» and the remaining state collapses to |11)
» Measuring the first qubit has the side effect of collapsing both

qubits into a single base state

» Can we actually create a state like this?
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Entanglement Circuit

» Look at the following circuit:

» What is the output of this circuit?
» The state % |00) + % |11) is known as a Bell state
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QIO Entanglement

» Equivalently, look at the following Q/O code:

bell :: QIO (Qbit, Qbit)

bell = do ql1 «— mkQbit False
g2 «— mkQ@bit False
applyU (hadamard q1)
applyU (controlledX q1 g2)
return (q1,q2)

» What state are the pair of qubits in?
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QIO Entanglement

» What do we get if we measure the qubits?

measureBell :: QIO (Bool, Bool)
measureBell = do (q1,q2) < bell
bl « measQ@bit q1
b2 +— measQbit g2
return (b1, b2)

» Simulating this Q/O computation gives:

[((True, True),0.5),((False,False),0.5)]

» The two separate measurements always agree
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Entanglement

» It is Entanglement that can be exploited in the EPR

experiment
» We shall look at a variant of the EPR experiment in QIO
shortly

» The two-qubit state that we created previously is called a Bell
state...

» and is often described as a maximally entangled state

» Entanglement is an important part of quantum computation

» It plays a big role in many quantum algorithms, including:

» Quantum teleportation
» Superdense coding
» Quantum cryptography

» We will be looking at these algorithms next week
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No cloning theorem

» There is no unitary operation that can clone an arbitrary qubit
state

» That is, given [¢)) = «|0) 4+ 3|1) we cannot create the state
[Y) = («]0) + 8[1)) @ (a[0) + 51))

» However, we can use entanglement to share a quantum state

» E.g. given the state [¢)) = «|0) + (|1), we can create the
state « |00) 4 (3 |11)

» This is what we did previously to create a Bell state from

sharing the state |+) = % |0) + \% 1)
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EPR in the Quantum IO Monad
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EPR in the Quantum 10 Monad

» We shall use a Bell pair to simulate a variant of the EPR
thought experiment using QIO

» Although it has not been mentioned, we have already
introduced all the constructs for defining quantum
computations in QIO

» We shall define the classical variant in Haskell, as well as the
quantum variant in Q/O

» We can repeatedly run the experiment and see what
percentage of the runs yield a matching measurement

» Checking whether locality holds for quantum computations in

QIO
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Classical Detectors

» Each detector can be in any of three different settings:

data Setting =A| B | C

» A classical particle must carry enough information for each
setting of the detector

type Particle = (Bool, Bool, Bool)

» A classical detector can take a setting and a particle, and
return the corresponding value

cDetector :: Setting — Particle — 10 Bool
cDetector A (a, —, _) = return a
cDetector B (_, b, _) = return b
cDetector C (—, —,c) = return ¢
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Classical Source

» A classical source just returns two identical random particles

cSource :: 10 (Particle, Particle)
cSource = do a < randomlO

b < randomlO

¢ < randomlO

return ((a, b, ), (a, b, c))

» We can now look at the quantum setup...
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Quantum Detectors

» In the quantum realm, we can use qubits as our particles

» The three settings on the detectors correspond to rotating the
qubit by 0°,120°, or 240° before measurement

» We can define a rotation of 120° around the Y-axis using the
following unitary:

ul20 :: Rotation
ul20 (a, b) = if (a = b) then c else (if b then — s else s)
where ¢ = cos (pi / 3)
s=sin(pi / 3)

» This can be calculated by an exponentiation of the pauli-Y
operator. We shall be looking at what this means in the labs...
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Quantum Detectors

» For each Setting we are able to define a measurement
rotation:

measureAngle :: Setting — Qbit — U

measureAngle A g = mempty

measureAngle B q = rot q ul20

measureAngle C q = (rot q ul20) ‘mappend" (rot q ul20)

» The quantum detector can now be defined:
gDetector :: Setting — Qbit — QIO Bool

gDetector s g = do applyU (measureAngle s q)
measQbit q
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Quantum Source

» The quantum source is able to make use of entanglement,
which is what leads to the non-locality

» For this experiment, it is sufficient that the quantum source
returns a bell pair as we have previously seen:

qSource :: QIO (Qbit, Qbit)
gSource = bell

» We can now look at running our experiments...
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Same Settings

» The first experiment is with the detectors both set to the
same Setting

testC :: Setting — 10 Bool

testC s = do (cl,c2) « cSource
bl < cDetector s cl
b2 « cDetector s c2
return (b1 = b2)

testQ :: Setting — QIO Bool

testQ s = do (g1, q2) «— qSource
bl «— gDetector s ql
b2 «— gDetector s g2
return (b1 = b2)
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Different Settings

» The tests both always return True as we would expect

» Now we can define the experiment for possibly different
settings on each detector

cExperiment :: (Setting, Setting) — 10 Bool

cExperiment (s1,s2) = do (c1,c2) < cSource
bl «— cDetector s1 cl
b2 « cDetector s2 c2
return (b1 = b2)

qgExperiment :: (Setting, Setting) — QIO Bool

qExperiment (s1,s2) =do (q1,q2) < gSource
bl «— gDetector s1 ql
b2 «— gDetector s2 q2
return (b1 = b2)
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Random Settings

» We can now pass random settings to both experiments,
combining them so we can correlate the results

experiment :: 10 (Bool, Bool)
experiment = do s1 < randomSetting
s2 « randomSetting
¢ < cExperiment (s1,s2)

q < run (qExperiment (s1,s2))
return (c, q)
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Random Settings

» What is the reuslt of running the experiment?

» If we just run it, we will get any of the following results:

(False, False), (False, True), (True, False), ( True, True)

» But what are the probabilities of either value being True?
» We shall be looking at this in the labs!
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Thank you

>
>
>
>
>
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Remember: Labs are on Thursday

| hope to see you there

Project topics and pairings are now finalised

Check the course webpage, and let me know of any problems...

Thank you
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