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Introduction

Introduction

I Last week we introduced the idea of Qubits

I Qubits can exist in a linear superposition of the classical base
states |0〉 and |1〉.

I E.g. |ψ〉 = α |0〉+ β |1〉
I with α, β ∈ C
I and the normalisation constraint that |α|2 + |β|2 = 1

I We can think of the state of a qubit as a point on the Bloch
sphere

I Unitary operations on single qubits correspond to rotations on
the Bloch sphere
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Introduction

Introduction

I We also looked at the EPR experiment and how locality
doesn’t hold in Quantum Mechanics

I We shall look at this today in terms of Quantum Computation

I How multiple qubits can become Entangled...

I meaning the state of a qubit can depend on the states of
other qubits

I We’ll then go on to look at implementing the EPR experiment
in QIO
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Part I

Measurement
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Measurement

I To understand entanglement, it is important to understand
measurement

I For a single qubit, we know that measurement collapses a
qubit into one of its base states, |0〉 or |1〉

I We also know that the probability of measuring either base
state is related to the amplitude of that state

I E.g. for an arbitrary state |ψ〉 = α |0〉+ β |1〉:
I The probability of measuring |0〉 is |α|2
I The probability of measuring |1〉 is |β|2

I Lets try some examples...
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Measurement Examples

I The state |+〉 = 1√
2
|0〉+ 1√

2
|1〉

I will measure to |0〉 with probability 1
2

I will measure to |1〉 with probability 1
2

I The state |−〉 = 1√
2
|0〉 − 1√

2
|1〉

I will measure to |0〉 with probability 1
2

I will measure to |1〉 with probability 1
2

I The state 1
2 |0〉 −

√
3

2 i |1〉
I will measure to |0〉 with probability 1

4
I will measure to |1〉 with probability 3

4

I But, what happens when we have more than one qubit?
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Multiple qubit states

I How can we describe multiple qubit states?

I How did we represent multiple bit states when we looked at
Dirac notation with classical reversible computation?

I Classically, multiple bit states correspond to bit strings in a
single Ket structure

I E.g. two bits can be any of the states |00〉, |01〉, |10〉 or |11〉
I and a tensor product is implicit in this notation

I E.g. we write |10〉 for the state |1〉 ⊗ |0〉
I How does this extend to qubits?
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Multiple qubit states

I A two-qubit state can appear in a linear superposition of all
four of the classical two-bit states

I E.g. An arbitrary two-qubit state
|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

I with α, β, γ, δ ∈ C
I and the normalisation constraint: |α|2 + |β|2 + |γ|2 + |δ|2 = 1
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Tensor product

I We can still build up states using the tensor product

I E.g. |01〉 = |0〉 ⊗ |1〉
I or |+−〉 = ( 1√

2
|0〉+ 1√

2
|1〉)⊗ ( 1√

2
|0〉 − 1√

2
|1〉)

I and we can use the distributivity laws of tensor product and
addition to simplify this:

I (v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)
I v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2)

I |+−〉 = 1
2 |00〉 − 1

2 |01〉+ 1
2 |10〉 − 1

2 |11〉
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Multiple qubit states

I This extends to n-qubit states (for any n ∈ N)

I Classically an n-bit state can be in any of 2n states

I An n-qubit state is described by a linear superposition of all
the 2n classical states

I With complex amplitudes and the normalisation condition as
before

I What about measurement?
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Measuring multiple qubits

I The amplitudes still correspond to the probability of
measuring each classical base state

I E.g. for an arbitrary two-qubit state
|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

I The probability of measuring |00〉 is |α|2
I The probability of measuring |01〉 is |β|2
I The probability of measuring |10〉 is |γ|2
I The probability of measuring |11〉 is |δ|2

I But the qubits are separate entities...

I We don’t have to measure them both
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Individual Measurements

I What if we have an arbitrary two-qubit state and only want to
measure the first qubit?

I |ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉
I Measuring a single qubit collapses the overall state into a

superposition of all the states in which it is in the measured
state

I The probability of measuring each base state is the sum of the
probabilities of each state in which it is that base state

I E.g. for the arbitrary two-qubit state above
I The probability of measuring the first qubit as |0〉 is |α|2 + |β|2
I and the overall state collapses to α′ |00〉+ β′ |01〉
I The probability of measuring the first qubit as |1〉 is |γ|2 + |δ|2
I and the overall state collapses to γ′ |10〉+ δ′ |11〉
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I Where α′, β′ and γ′, δ′ are re-normalised:

α′ = α√
|α|2+|β|2

β′ = β√
|α|2+|β|2

γ′ = γ√
|γ|2+|δ|2

δ′ = δ√
|γ|2+|δ|2

I We can generalise this for n-qubit systems

I and measuring any m 6 n qubits
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Measurement example

I The state 1
2 |00〉+ 1

2 |01〉+ 1
2 |10〉+ 1

2 |11〉 is in an equal
superposition

I What happens if we measure the first qubit?
I We measure |0〉 with probability 1

2
I and the remaining state collapses to 1√

2
|0〉+ 1√

2
|1〉

I We measure |1〉 with probability 1
2

I and the remaining state also collapses to 1√
2
|0〉+ 1√

2
|1〉

I We could have predicted this, as this state can be written in
terms of each of its constituent qubits

I 1
2 |00〉+ 1

2 |01〉+ 1
2 |10〉+ 1

2 |11〉 =
( 1√

2
|0〉+ 1√

2
|1〉)⊗ ( 1√

2
|0〉+ 1√

2
|1〉)

I This is not always the case...
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Part II

Entanglement
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Entanglement

I The state 1√
2
|00〉+ 1√

2
|11〉 is an entangled state

I What does this mean?
I What happens if we measure the first qubit?

I We get |0〉 with probability 1
2

I and the remaining state collapses to |00〉
I We get |1〉 with probability 1

2
I and the remaining state collapses to |11〉

I Measuring the first qubit has the side effect of collapsing both
qubits into a single base state

I Can we actually create a state like this?
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Entanglement Circuit

I Look at the following circuit:

|0〉 H •

|0〉 X

I What is the output of this circuit?

I The state 1√
2
|00〉+ 1√

2
|11〉 is known as a Bell state
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QIO Entanglement

I Equivalently, look at the following QIO code:

bell :: QIO (Qbit,Qbit)
bell = do q1 ← mkQbit False

q2 ← mkQbit False
applyU (hadamard q1)
applyU (controlledX q1 q2)
return (q1 , q2)

I What state are the pair of qubits in?
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QIO Entanglement

I What do we get if we measure the qubits?

measureBell :: QIO (Bool ,Bool)
measureBell = do (q1 , q2)← bell

b1 ← measQbit q1
b2 ← measQbit q2
return (b1 , b2)

I Simulating this QIO computation gives:

[((True,True),0.5),((False,False),0.5)]

I The two separate measurements always agree
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Entanglement

I It is Entanglement that can be exploited in the EPR
experiment

I We shall look at a variant of the EPR experiment in QIO
shortly

I The two-qubit state that we created previously is called a Bell
state...

I and is often described as a maximally entangled state

I Entanglement is an important part of quantum computation
I It plays a big role in many quantum algorithms, including:

I Quantum teleportation
I Superdense coding
I Quantum cryptography

I We will be looking at these algorithms next week
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No cloning theorem

I There is no unitary operation that can clone an arbitrary qubit
state

I That is, given |ψ〉 = α |0〉+ β |1〉 we cannot create the state
|ψψ〉 = (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉)

I However, we can use entanglement to share a quantum state

I E.g. given the state |ψ〉 = α |0〉+ β |1〉, we can create the
state α |00〉+ β |11〉

I This is what we did previously to create a Bell state from
sharing the state |+〉 = 1√

2
|0〉+ 1√

2
|1〉
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Part III

EPR in the Quantum IO Monad
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EPR in the Quantum IO Monad

I We shall use a Bell pair to simulate a variant of the EPR
thought experiment using QIO

I Although it has not been mentioned, we have already
introduced all the constructs for defining quantum
computations in QIO

I We shall define the classical variant in Haskell, as well as the
quantum variant in QIO

I We can repeatedly run the experiment and see what
percentage of the runs yield a matching measurement

I Checking whether locality holds for quantum computations in
QIO
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Classical Detectors

I Each detector can be in any of three different settings:

data Setting = A | B | C

I A classical particle must carry enough information for each
setting of the detector

type Particle = (Bool ,Bool ,Bool)

I A classical detector can take a setting and a particle, and
return the corresponding value

cDetector :: Setting → Particle → IO Bool
cDetector A (a, , ) = return a
cDetector B ( , b, ) = return b
cDetector C ( , , c) = return c
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Classical Source

I A classical source just returns two identical random particles

cSource :: IO (Particle,Particle)
cSource = do a← randomIO

b ← randomIO
c ← randomIO
return ((a, b, c), (a, b, c))

I We can now look at the quantum setup...
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Quantum Detectors

I In the quantum realm, we can use qubits as our particles

I The three settings on the detectors correspond to rotating the
qubit by 0o , 120o , or 240o before measurement

I We can define a rotation of 120o around the Y-axis using the
following unitary:

u120 :: Rotation
u120 (a, b) = if (a ≡ b) then c else (if b then− s else s)

where c = cos (pi / 3)
s = sin (pi / 3)

I This can be calculated by an exponentiation of the pauli-Y
operator. We shall be looking at what this means in the labs...
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Quantum Detectors

I For each Setting we are able to define a measurement
rotation:

measureAngle :: Setting → Qbit → U
measureAngle A q = mempty
measureAngle B q = rot q u120
measureAngle C q = (rot q u120) ‘mappend ‘ (rot q u120)

I The quantum detector can now be defined:

qDetector :: Setting → Qbit → QIO Bool
qDetector s q = do applyU (measureAngle s q)

measQbit q
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Quantum Source

I The quantum source is able to make use of entanglement,
which is what leads to the non-locality

I For this experiment, it is sufficient that the quantum source
returns a bell pair as we have previously seen:

qSource :: QIO (Qbit,Qbit)
qSource = bell

I We can now look at running our experiments...
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Same Settings

I The first experiment is with the detectors both set to the
same Setting

testC :: Setting → IO Bool
testC s = do (c1 , c2)← cSource

b1 ← cDetector s c1
b2 ← cDetector s c2
return (b1 ≡ b2)

testQ :: Setting → QIO Bool
testQ s = do (q1 , q2)← qSource

b1 ← qDetector s q1
b2 ← qDetector s q2
return (b1 ≡ b2)
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Different Settings

I The tests both always return True as we would expect

I Now we can define the experiment for possibly different
settings on each detector

cExperiment :: (Setting , Setting)→ IO Bool
cExperiment (s1 , s2) = do (c1 , c2)← cSource

b1 ← cDetector s1 c1
b2 ← cDetector s2 c2
return (b1 ≡ b2)

qExperiment :: (Setting , Setting)→ QIO Bool
qExperiment (s1 , s2) = do (q1 , q2)← qSource

b1 ← qDetector s1 q1
b2 ← qDetector s2 q2
return (b1 ≡ b2)
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Random Settings

I We can now pass random settings to both experiments,
combining them so we can correlate the results

experiment :: IO (Bool ,Bool)
experiment = do s1 ← randomSetting

s2 ← randomSetting
c ← cExperiment (s1 , s2)
q ← run (qExperiment (s1 , s2))
return (c, q)
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Random Settings

I What is the reuslt of running the experiment?

I If we just run it, we will get any of the following results:

(False,False), (False,True), (True,False), (True,True)

I But what are the probabilities of either value being True?

I We shall be looking at this in the labs!
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Thank you

I Remember: Labs are on Thursday

I I hope to see you there

I Project topics and pairings are now finalised

I Check the course webpage, and let me know of any problems...

I Thank you
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