
G53NSC and G54NSC

Non-Standard Computation

Lab 1 Exercises

Dr. Alexander S. Green

28th January 2010

Introduction

The language we are using for these labs is Haskell. It is recommended that you
start using GHCi (part of the Glasgow Haskell Compiler) to run and test your
solutions1. The Glasgow Haskell Compiler is available online at:
http://www.haskell.org/ghc/

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

The weekly submissions should be emailed to me (asg@cs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).

1Most of the early exercises will run in Hugs, but when we come to use the Quantum IO
Monad later in the course, GHCi will be required

1



Exercise sheet 1

The following exercises should be attempted.

1. Define a Type (Bit) in Haskell that represents the two states a bit can be
in2.

2. A binary number can be thought of as a list of bits (with the least sig-
nificant bit first). Define a function (int2bits :: Int → [Bit ]) that converts
an integer into the corresponding list of bits that represents the binary
expansion of the given integer.

Example: int2bits 150 should give a list of bits representing the binary
expansion 01101001 (note: the least significant bit is the first bit)

A Haskell case expression will probably be useful here, but isn’t the only
way of doing it. Other useful library functions include:

• even :: Int → Bool , which tests whether an integer is even

• div :: Int → Int → Int , implements integer division.

3. Implement in Haskell the inverse function to the previous exercise. E.g.
write a function (bits2int :: [Bit ] → Int) that converts a given list of bits
into the corresponding integer representation.

Test your previous two answers by checking that the function application
λx → bits2int (int2bits x ) corresponds to the identity on integers.

4. Implement, in Haskell, a function that computes the factors of a given
integer, and write a paragraph explaining the complexity of your solution3.
Could you have made it more efficient?

5. Functions in Haskell are pure so we must make use of Monads to enable us
to define effectful computations. All I/O in Haskell takes place in what is
known as the IO Monad. Monadic programs use a special notation called
do notation which give monadic computations a more imperative style.
To write a simple program that echoes characters to the screen we can
make use of the following library functions:

• getChar :: IO Char , is an effectful computation that reads in a single
character from the keyboard.

• putChar :: Char → IO (), is an effectful computation, that has no
return value4, but has the side effect of displaying its argument char-
acter to the screen

2Type and Constructor names must begin with an Upper-case letter
3Make sure you take into account the complexity of any library functions that you may

have used
4Technically the return value is the unit type ()

2



Using do notation we can write the following echo function that binds the
result of reading in a character to a variable x which is then used as the
argument to the putChar function. (note: this program doesn’t terminate,
so use Ctrl-C in GHCi to break out of its execution)

echo :: IO ()
echo = do x ← getChar

putChar x
echo

Using the above functions (getChar and putChar), implement functions
(getString :: IO String and putString :: String → IO ()) that read in (and
print out respectively) an entire line of text.

For example, the getString function would repeatedly call the getChar
function until a newline character (’\n’) is detected.

6. Implement a function (echoString :: IO ()) that echoes an entire string to
the screen (note: You should make use of the two functions you defined
in the previous exercise).

7. Using the random number generator in the IO Monad, implement a prob-
abilistic function that tests whether its argument is a prime number5,
returning False if the number isn’t prime, or True if the number is prob-
ably prime.

Searching online for Primality Test is a good starting point for finding an
algorithm for this task.

You will need to import the System.Random library to make use of the
random number generator. Once imported the following function is avail-
able:

• randomRIO :: (Int , Int)→ IO Int , which is an effectful computation
that returns a randomly selected integer in the given range.

8.

Who is this man?
Why might his name have come up whilst you
were answering exercises 4 and 7?
(This last exercise is unassessed)

5There are deterministic primality tests, but we are implementing a probabilistic one here
as a practise using Monads in Haskell

3


