
G53NSC and G54NSC

Non-Standard Computation

Lab 2 Exercises

Dr. Alexander S. Green

4th February 2010

Introduction

The language we are using for these labs is Haskell. It is recommended that you
start using GHCi (part of the Glasgow Haskell Compiler) to run and test your
solutions1. The Glasgow Haskell Compiler is available online at:
http://www.haskell.org/ghc/

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

The weekly submissions should be emailed to me (asg@cs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).

1GHC is required by the Quantum IO Monad, and is now installed as part of the Haskell
platform in the main school lab

1

Exercise sheet 2

These exercises carry on from ”Exercise sheet 1” and will use some of the types
and functions you have previously defined (E.g the type Bit is used in the first
few exercises).

Universality

The following exercises on universality should be attempted:

1. In Haskell, implement a function nor :: (Bit ,Bit)→ Bit that computes the
NOR of the two input arguments (The truth table for NOR can easily be
found online, or in the lecture notes).

2. To show that a Boolean function is universal, we can show that we can
use it to define another universal set of functions. In Haskell, using only
the nor you have defined previously, implement the universal set {∧,∨,¬}
of functions.
E.g. define the following functions

• and ′ :: (Bit ,Bit)→ Bit
• or ′ :: (Bit ,Bit)→ Bit
• neg :: Bit → Bit

3. Implement, in Haskell, a function fredkin :: (Bit ,Bit ,Bit)→ (Bit ,Bit ,Bit)
that mimics the action of a Fredkin gate.

4. In Haskell, using only the fredkin function you have defined previously,
(re)implement the universal set {∧,∨,¬} of functions.

5. In Haskell, use the three functions defined for exercise 4, to implement a
function that has the following truth table:

input1 input2 input3 input4 output

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

2

Reversible Computation

The following exercises use the classical subset of QIO . An introduction to the
classical subset of QIO is given here, followed by the exercises on reversible
computation.

The Quantum IO Monad

The Quantum IO Monad, or QIO is a monadic interface from Haskell to quan-
tum computation. More precisely, it is a library that allows you to define unitary
operators and effectful quantum computations, along with simulator functions
that allow you to run the quantum computations that you define. A lot of
information on QIO including its implementation are available online (see the
links on the course webpage). Installation of QIO is relatively straightforward
if you can make use of cabal (cabal is part of the Haskell platform, and as such
should already be installed on the machines in A32).

The following list of instructions will install QIO on the windows machines
in A32 (but you may need to re-install it for every session). The following
commands should be entered in a command prompt:

• Set the http proxy in the current command prompt

set HTTP_PROXY=wwwcache.cs.nott.ac.uk:3128

• Make sure the cabal list of packages is up to date:

cabal update

• Install QIO (in your own user space, as you don’t have global permissions)

cabal install QIO --user

(note: if you don’t have a proxy, and you are using your own machine, then
you should just have to update the list of packages as above, and install the
QIO package without the –user flag)

If you are having difficulties installing QIO you can always download the
source from: http://www.cs.nott.ac.uk/ asg/QIO/ and import the files as nec-
essary. However, i would recommend this as a last resort, and suggest that you
contact me for support.

The following section is an introduction to the classical subset of QIO , and
assumes that you have QIO installed using the cabal method described above.
We will be using the full quantum power of QIO in future exercise sheets, so
please make sure you have QIO installed and working as soon as possible.

3

An introduction to the classical subset of QIO

QIO gives us access to a Haskell library of quantum computation. The classical
subset of QIO restricts the unitary operations that we can define, but has the
benefit that running the computations can be done much more efficiently (There
is upto an exponential overhead in simulating quantum computation on a clas-
sical computer, but not reversible computation). This section aims to introduce
the classical subset of QIO , including how we are able to run the computations
that we define.

Although we are able to use QIO to define classical reversible computations,
and run them, a lot of the syntax is quantum computation oriented. For now,
please treat certain entities as their classical counterparts. E.g. The type Qbit
merely represents bits in the classical subset of QIO .

Computations exist within the monadic QIO data-type. Therefore, when
we are defining a QIO computation we must use the monadic syntax provided
by Haskell. Namely, we make use of do notation.

The QIO type of quantum computations, defines only three functions that
can be used in defining a computation. These functions are the same for when
we are defining a reversible computation as for when we are defining a quantum
computation. Namely the functions provided are the following:

mkQbit :: Bool → QIO Qbit
Initialises a bit to the given boolean value. The return type tells us that this
function defines a QIO computation that returns a reference to a Qbit , which
for today is just a type synonym for a reference to a bit.

applyU :: U → QIO ()
The applyU function is used to apply a unitary operator (which inhabit the type
U) to the current state the system is in. Here, the system refers to any bits that
are currently in scope (or in other words, have previously been initialised by a
call to the mkQbit function). The reversible nature of the unitary operators is
shown by this function’s return type. The return value is a QIO computation,
but no information is returned as it is just the state of the system that has been
updated in an information preserving manner. We shall look at the U data-type
shortly.

measQbit :: Qbit → QIO Bool
This function is used to measure what state a bit (Qbit) is currently in. We
shall be covering the importance of the measurement operation in quantum
computation in the next few lectures, but for reversible computation, you can
just think of this operation as returning the current value a bit is in. It is a
QIO computation that returns the Boolean value corresponding to the value of
the bit it is measuring.

Computations in QIO roughly follow the same structure. First, an input
state is initialised using as many calls to mkQbit as is necessary, then some
form of processing takes place, in the form of applying a unitary operator to
the input state. Finally, whichever bits form the output are measured and the
results are returned.

These functions and the U data-type that we shall look at shortly, are all

4

defined as part of the syntax of QIO . In order to use them, you will need to
import the QioSyn library. Eg. import QIO .QioSyn

Before looking at what unitary operators we can construct, we can already
test out the initialisation and measurement operations. Look at the following
code:

testQIO :: QIO (Bool ,Bool)
testQIO = do r1 ← mkQbit False

r2 ← mkQbit True
b1 ← measQbit r1
b2 ← measQbit r2
return (b1 , b2)

We can infer from the code what it is doing. First it initialises a bit to the
state False, and gives that bit the reference r1 , then it initialises another bit
to the state True and gives it the reference r2 . The result of measuring the bit
referenced by r1 is stored in b1 , and the result of measuring the bit referenced
by r2 is stored in b2 . The pair of these two values (b1 , b2) is then returned as
the result of the computation.

In order to actually run this computation, we must now use one of the run
functions provided by QIO . We’ll look at the choices in more detail next week,
but as we are only using the classical subset of QIO this week, we only need to
introduce the runC function that can be used to run classical reversible QIO
computations. The runC function is part of the QioClass library, and as such
it is necessary to import it too (E.g. import QIO .QioClass).

The runC function has type QIO a → a and is able to just run a computa-
tion that only uses the classical subset of QIO , returning the pure value which
the computation evaluates to. So, running the testQIO function from above,
using runC testQIO gives a pure value of type (Bool ,Bool). In fact, it gives the
value (False,True) just as we should have been expecting.

We can now start to look at the classical subset of the U data-type, which
will allow us to define arbitrary reversible computations. It is the members of
this U data-type that correspond to the reversible circuits we have been looking
at in the lecture slides.

The U data-type gives us the following constructors:
mempty :: U
mappend :: U → U → U
unot :: Qbit → U
swap :: Qbit → Qbit → U
cond :: Qbit → (Bool → U)→ U
ulet :: Bool → (Qbit → U)→ U
urev :: U → U

The following list gives a run through of the behaviour of each construct:

• The first two constructs (mempty and mappend) are just derived from the
fact that the U data-type is defined as a monoid in Haskell. What this
means for us, is that we can use mempty to define the identity operation,
and mappend to combine two members of the U type sequentially. So

5

that we can use these operations, we must also import the Data.Monoid
library (E.g. import Data.Monoid).

• The unot construct is used to negate the bit referenced by its argument,
and corresponds exactly to the X gate we have in the circuit notation.

• The swap construct is used to swap the states of the two bits referenced
by its arguments, and corresponds to the swapping of wires in the circuit
notation.

• The cond construct corresponds closely to the control structures we saw in
the circuit notation. The bit referenced by its first argument is the control
bit, and its value is used to decide which sub-unitary is run. The Boolean
function that makes up the second argument must return a member of the
U type for both members of the Bool data-type and is evaluated over the
value of the control wire to decide which of these two sub-unitaries is run.
As an example we can define the controlled-X operation as follows:

controlledX :: Qbit → Qbit → U
controlledX r1 r2 = cond r1 (λx → if x then unot r2 else mempty)

if the control bit is True then the unot operation is performed, but if the
control wire is false then the mempty operation is performed.

You must be careful when defining control structures, and ensure that
the sub-unitaries do not make use of the control bit (this can lose the
reversibility requirement).

• The ulet construct allows us to introduce ancilliary bits into our compu-
tations. If part of a circuit requires an extra bit in order to compute a
result, but that bit doesn’t form part of the output, and is returned to its
original value, then we can use an ancilliary bit for this job. We shall look
more at ancilliary bits and the ulet construct in the exercises below.

• The last construct, urev , is possible because all the members of the U
type are unitary operators (or reversible). This function just returns the
inverse of its argument unitary.

Before going on to exercises using the classical subset of QIO we shall look
at a few more example reversible computations written in QIO .

Possibly the simplest example we can give is the negation function, defined
using QIO . It takes a Boolean value as input, which is used to initialise a
bit, this bit is then negated by applying the unot unitary, and the result of
measuring it is the return value of the computation.

notQIO :: Bool → QIO Bool
notQIO b = do r1 ← mkQbit b

applyU (unot r1)
measQbit r1

The results of running this computation are as follows:

6

runC (notQIO False) = True
runC (notQIO True) = False

A slightly more complicated example would be to use a controlled-X opera-
tion to implement the XOR operation.

xor :: Bool → Bool → QIO Bool
xor a b = do r1 ← mkQbit a

r2 ← mkQbit b
applyU (controlledX r1 r2)
measQbit r2

The results of running this computation are as follows:
runC (False ‘xor ‘ False) = False
runC (False ‘xor ‘ True) = True
runC (True ‘xor ‘ False) = True
runC (True ‘xor ‘ True) = False

One last example before we move onto the exercises is to implement the
NAND function using the circuit that follows the generalised model of reversible
computation as presented in this weeks lecture. We can make use of a single
ancilliary bit in order to achieve this. The firs thing we need to define is a
unitary that corresponds to the tofolli gate

toffoli :: Qbit → Qbit → Qbit → U
toffoli r1 r2 r3 = cond r1 (λx → (if x then (controlledX r2 r3) else mempty))

now we can define the full unitary which includes the ancilliary bit
reversibleNAND :: Qbit → Qbit → Qbit → U
reversibleNAND r1 r2 r4 = ulet True (λr3 → (toffoli r1 r2 r3)

‘mappend ‘
(controlledX r3 r4)
‘mappend ‘
(toffoli r1 r2 r3))

Because the ulet takes a value into which the ancilliary bit is initialised, we
don’t need to worry about the extra X gates that appear in the circuit diagram.
We can now define the computation which returns the NAND of its two inputs,
making sure we set the bit that will contain the result to 0.

nand :: Bool → Bool → QIO Bool
nand a b = do r1 ← mkQbit a

r2 ← mkQbit b
r3 ← mkQbit False
applyU (reversibleNAND r1 r2 r3)
measQbit r3

The results of running this computation are as follows:
runC (False ‘nand ‘ False) = True
runC (False ‘nand ‘ True) = True
runC (True ‘nand ‘ False) = True
runC (True ‘nand ‘ True) = False

In the following section, you will be expected to use the classical subset of
QIO as introduced here in order to implement your solutions. However, the
exercises will contain hints and tips on using QIO

7

Exercises on reversible computation

The following exercises on reversible computation should be attempted using
the classical subset of QIO :

1. The first few exercises on reversible computation relate to defining an
addition function. The first task is to implement a function, similar to
the int2bits function from last week, that initialises a list of bits in QIO
such that it represents the binary expansion of a given integer. To make
the definition of the addition function easier, this function must return a
list of fixed length, that is, it represents fixed precision integers in QIO .
Define in Haskell a QIO computation that takes an Int as an argument
and returns a list of 32 bits initialised to the binary expansion of that
number. E.g. define a function int2qbits :: Int → QIO [Qbit]

Hint: you may like to use the function int2bits that you defined last week,
modified slighty so that it always returns 32 Booleans (int2bits ′ :: Int →
[Bool]), and define a QIO computation that turns a list of Booleans into
a list of bits (bits2qbits :: [Bool]→ QIO [Qbit]).

Other useful functions on lists include:

• take :: Int → [a] → [a] which takes a list and returns a list that is
the first n elements of the given list, where n is the given Int .

• repeat :: a → [a] returns an infinite list of the given element a.

2. Define a function qbits2int :: [Qbit] → QIO Int that returns the integer
represented by the list of bits in the argument. This should be the inverse
of the previous exercise. Test your solution to make sure that the following
function is indeed the identity on Int :

int2int :: Int → QIO Int
int2int n = do qn ← int2qbits n

qbits2int qn

3. Now we have a representation of numbers in QIO we can move on to
defining the unitary operations (E.g. members of the U data-type) that
represent a circuit for reversible addition. In irreversible computation, we
would use full-adders for this purpose:

ai

fabi si = ai ⊕ bi ⊕ cin

cin cout = (ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi))

However, a full-adder defined like this is not reversible. We can define a
new reversible full-adder that keeps track of two of its inputs, and uses an

8

extra heap bit for one of the outputs:

cin

fa

cin

ai ai

bi si = ai ⊕ bi ⊕ cin

� cout = (ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi))

This circuit can be implemented using two Toffoli gates, and two controlled-
X gates. Remembering that controlled-X gates introduce an XOR oper-
ation (⊕) and the toffoli gate introduces an AND operation (within an
XOR):

cin • • cin
ai • • ai

bi • X • X si = ai ⊕ bi ⊕ cin

�
X X cout = (ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi))

Define using QIO in Haskell, a unitary operator that represents the above
circuit. E.g define a function fullAdder :: Qbit → Qbit → Qbit → Qbit →
U that defines the circuit above over its four argument bits.

note. You may find it useful to use the definitions for a Toffoli gate, and
a controlled-X gate given in the introduction to QIO .

4. Now that we have a full-adder unitary, we need to string 32 of them
together to define an addition unitary over our entire lists of bits. The
following circuit diagram is gives a mock up of how this can be achieved:

�

fa

. . . o0

a0 . . . a0

b0
. . . s0

�

fa

. . . o1

a1 . . . a1

b1
. . . s1

�

fa

. . . o2

. . .

. . .

. . .
...

...
...

...
...

...
...

. . .

fa

o31

a31 . . . a31

b31
. . . s31

� . . . overflowout

9

where [a0, a1 . . . a31] and [b0, b1 . . . b31] represent the input bit strings,
[s0, s1 . . . s31] represents the output sum bit string, [o0, o1 . . . o31] represent
the intermediary carry bits, and overflowout is an extra bit that carries
any overall overflow information.
Implement this circuit as a member of the U data-type. E.g. write a
function adder :: [Qbit] → [Qbit] → [Qbit] → Qbit → U . Note that we
cannot currently use ancilliary bits for the carries, so we must have an
extra list of bits to hold the carry bits. The final Qbit argument is the
overflow bit.

5. So that we can use ancilliary bits for the carries, we need to use the gener-
alised model of reversible computation that was introduced in the lectures.
Implement a member of the U data-type that represents a generalised ver-
sion of the adder defined in the previous exercise.
Hint. The easiest way to do this, isn’t to copy out the result and undo the
whole computation, but to actually just undo the parts of the computation
that calculated the overflow bit. Hence the only thing we need to copy out
is the overflow bit itself, and define a member of the U data-type that is
simlilar to the inverse of the adder, but doesn’t undo the summing step.
E.g. define a function undoCarry :: Qbit → Qbit → Qbit → Qbit → U
that defines the inverse of the following circuit:

cin

fa′

cin

ai ai

si si = ai ⊕ bi ⊕ ci

� cout = (ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi))

Hint: You should make use of the following function (in conjunction with
your new int2bits function) that is an extension of ulet over a whole list
of bits:

letBits :: [Bool]→ ([Qbit]→ U)→ U
letBits bs fbs = letBits ′ bs []

where letBits ′ [] bs = fbs bs
letBits ′ (b : bs) bs ′ = ulet b (λx → letBits ′ bs (bs ′ ++ [x]))

6. Using the functions defined in the above exercises, implent a QIO compu-
tation that sums two input integers. E.g. define a function add :: Int →
Int → QIO Int that intialises two lists of bits to represent the input inte-
gers, then sums them using the unitary operator defined in the previous
exercise, and finally returns the resulting list of bits as an integer.
Hint. You can chose how you want to deal with overflow.

7. Can you now define a subtraction operation using only the unitaries you
have defined already? Implement it as a function sub :: Int → Int →
QIO Int
Hint. This is possible, so you should attempt it.

10

