
G53NSC and G54NSC

Non-Standard Computation

Lab 3 Exercises

Dr. Alexander S. Green

11th February 2010

Exercise sheet 3

These exercises carry on from Exercise sheets 1 and 2, and may use some of the
types and functions you have previously defined.

The exercises are listed here, but more information can be found in the hints
and tips section below.

1. Implement, in Haskell, a function that converts a single qubit state, given
as two complex amplitudes, into the corresponding point on the Bloch
sphere given by its polar co-ordinates.

2. Implement, in Haskell, the inverse of the previous exercise. That is, im-
plement a function that converts a point on the Bloch sphere, given in
polar co-ordinates, into the corresponding single qubit state given as two
complex amplitudes.

3. In Haskell, define the single qubit states corresponding to |0〉 , |1〉 , |+〉 and
|−〉. What are the polar co-ordinates for each of these states on the Bloch
sphere?

4. Using the Quantum IO Monad, define a unitary operator that performs
the Hadamard rotation on its argument qubit (see hints and tips below
for more information).

5. Define a QIO computation that returns a qubit in the |+〉 state

6. Define a QIO computation that returns a qubit in the |−〉 state

7. Define a QIO computation that measures the |+〉 and |−〉 states from
above. What is the difference in the measured values for each of the
states? Why is this?

8. Define, using QIO , unitary operators that represent each of the three Pauli
operators.

1

9. Write a QIO computation of type Bool → QIO Bool , that initialises a
qubit into the given Boolean base state, applies a hadamard operation to
that qubit, then a Pauli-Z operation, and then another hadamard opera-
tion. Finally returning the measured value of the qubit.

10. What operation has the above QIO computation defined? Could you have
calculated this without running the computation?

Hints and Tips

Exercise information

1. I would suggest defining a data-type to represent a single qubit state
(QubitState), such as a pair of complex numbers, and a data-type to repre-
sent the polar co-ordinates of a point on a Bloch sphere (PolarCoordinates),
such as a pair of real numbers (The types RR and CC are defined in
QIO .QioSyn and use floating point numbers to represent the real num-
bers and complex numbers respectively).

The function you need to define will then have type toPolar ::QubitState →
PolarCoordinates.

2. You should define a function of the type toQubit :: PolarCoordinates →
QubitState.

3. You should define the four states |0〉 , |1〉 , |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 =

1√
2
(|0〉 − |1〉) as members of your QubitState type. What is the output of

the toPolar function applied to each of these states?

4. Using the Quantum IO Monad for defining quantum computations, is very
similar to using it to define reversible computations. The actual members
of the QIO type are the same, but there is one new constructor in the U
data-type that replaces the unot operator1. This new constructor has type
rot :: Qbit → Rotation → U and corresponds to single qubit “rotations”.
With the Rotation type, we are able to define any 2x2 complex valued
matrix, and use the rot constructor to make this into a unitary operator
over a specific qubit. It is upto the programmer to ensure that the matrices
defined are indeed unitary.

The Rotation data type is just a type synonym for (Bool ,Bool) → CC ,
which means a rotation is defined by a function that takes a pair of
Booleans and returns a complex number. The matrix defined by f ::
Rotation can be thought of as:[

f (False,False) f (False,True)
f (True,False) f (True,True)

]
1In fact, unot is an instance of the new constructor

2

For example, we could define the not rotation as follows

notRot :: Rotation
notRot (False,False) = 0
notRot (False,True) = 1
notRot (True,False) = 1
notRot (True,True) = 0

although there are simpler ways to do this, such as

notRot :: Rotation
notRot (a, b) = if (a ≡ b) then 0 else 1

we can even now reimplement unot

unot :: Qbit → U
unot q = rot q notRot

this is in fact already done in the QioSyn library file, meaning that all
our previously defined reversible computations are also quantum compu-
tations.

For this exercise, you need to define a function hadamard ::Qbit → U that
uses a Rotation which implements the 2x2 matrix corresponding to the
Hadamard rotation.

5. Think about the effect that the Hadamard rotation has on the base states,
and define a QIO computation that initialises a qubit, and then applies
the hadamard unitary to that qubit. The type of this computation should
be plus :: QIO Qbit

6. This exercise is very simlar to the previous one. The type of this compu-
tation should be minus :: QIO Qbit

7. This computations should have type plusMinus :: QIO (Bool ,Bool), and
should initialise two qubits using the functions defined in the previous two
exercises. The result of measuring these two qubits should be returned.

Now that we actually want to run a quantum computation we need to
look at the options available to us (the run and sim functions are both in
the QIO .Qio library file). Try both, what does the ouput of sim tell us
about measuring a |+〉 or a |−〉 state?

8. The matrices for the three Pauli operators are given in the lecture notes.
You can simply use unot for the pauli-X operator, but should define uY ::
Qbit → U and uZ :: Qbit → U .

9. You can either combine the three rotations in one unitary using the
mappend function, or use three applyU operations in your QIO computa-
tion.

10. Try multiplying the three matrices together and seeing what matrix you
are left with. Alternatively, try running the computation and see what
operation is achieved.

3

The Quantum IO Monad

The Quantum IO Monad, or QIO is a monadic interface from Haskell to quan-
tum computation. More precisely, it is a library that allows you to define unitary
operators and effectful quantum computations, along with simulator functions
that allow you to run the quantum computations that you define. A lot of
information on QIO including its implementation are available online (see the
links on the course webpage). Installation of QIO is relatively straightforward
if you can make use of cabal (cabal is part of the Haskell platform, and as such
should already be installed on the machines in A32).

The following list of instructions will install QIO on the windows machines
in A32 (but you may need to re-install it for every session). The following
commands should be entered in a command prompt:

• Set the http proxy in the current command prompt

set HTTP_PROXY=wwwcache.cs.nott.ac.uk:3128

• Make sure the cabal list of packages is up to date:

cabal update

• Install QIO (in your own user space, as you don’t have global permissions)

cabal install QIO --user

(note: if you don’t have a proxy, and you are using your own machine, then
you should just have to update the list of packages as above, and install the
QIO package without the –user flag)

If you are having difficulties installing QIO you can always download the
source from: http://www.cs.nott.ac.uk/ asg/QIO/ and import the files as nec-
essary. However, i would recommend this as a last resort, and suggest that you
contact me for support.

Information

The language we are using for these labs is Haskell. It is recommended that you
start using GHCi (part of the Glasgow Haskell Compiler) to run and test your
solutions2. The Glasgow Haskell Compiler is available online at:
http://www.haskell.org/ghc/

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

2GHC is required by the Quantum IO Monad, and is now installed as part of the Haskell
platform in the main school lab

4

The weekly submissions should be emailed to me (asg@cs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).

5

