GH3NSC and GH4NSC
Non-Standard Computation
Lab 5 Exercises

Dr. Alexander S. Green
25th February 2010

Exercise sheet 5

These exercises carry on from Exercise sheets 1, 2, 3 and 4; and may use some
of the types and functions you have previously defined.

The exercises are listed here, but more information can be found in the hints
and tips section below.

1.
2.
3.

Implement superdense coding in QIO.
Implement quantum teleportation in QI0.
Implement Deutsch’s algorithm in QI0.

How many functions of type (Bool, Bool, Bool) — Bool are constant, and
how many are balanced? Define some of them in Haskell.

Implement a variant of the Deutsch-Jozsa algorithm that works for the
functions defined for the previous exercise, E.g. that takes a function in
(Bool, Bool, Bool) — Bool as its input.

Hints and Tips

Exercise information

1.

Superdense coding can be thought of in three parts. First, there is the
creation of a Bell pair, then there is what Alice does with her classical
data, and one member of the Bell pair, and then finallly what Bob does
to extract the original classical data. You should already have a function
that implements a Bell pair in QIO, so just need to define a function
sdcAlice::(Bool, Bool) — Qbit — QIO Qbit that represents Alice applying
the relevent unitary operation to the given qubit, and a function sdcBob ::
Qbit — Qbit — QIO (Bool, Bool) which represents what Bob has to do.



Finally, you will have to piece them together to give a function superdense::
(Bool, Bool) — QIO (Bool, Bool)

2. Quantum teleportation can also be thought of in three parts. Again, the
first part sets up a Bell pair, the second part is what Alice has to do, and
the final part is what Bob has to do. You should define a function gtAlice::
Qbit — Qbit — QIO (Bool, Bool), and a function qtBob :: (Bool, Bool) —
Qbit — QIO Qbit, and then put them together with the creation of a Bell
state in an overall function teleport :: Qbit — QIO Qbit

Note. You should be able to define the functions ¢tAlice and qtBob in
terms of the functions sdAlice, and sdBob.

Try and think of a good way of testing your teleport function, maybe defin-
ing something like the falseProb exercise from last week, that teleports the
qubit before measurement.

3. The overall function you define for this exercise should have the type
deutsch :: (Bool — Bool) — QIO Bool, that is, it takes a Boolean function
as its argument, and returns a Boolean value that represents whether or
not the given function is balanced.

The unitary required for Deutsch’s algorithm can be defined using the
input Boolean function.

4. There are lots more balanced functions of type (Bool, Bool, Bool) — Bool
than constant ones. I would suggest defining 2 constant functions, and 6
balanced functions.

5. The Deutsch-Jozsa is very similar to Deutsch’s algorithm, again, you
should construct the required unitary from the input function. The overall
function you define, should have the type deutschJozsa::((Bool, Bool, Bool)
Bool) — QIO (Bool, Bool, Bool). If all three output Booleans are False,
then the input function was constant.

You may find the following function useful:

cond3 :: (Qbit, Qbit, Qbit) — ((Bool, Bool, Bool) — U) — U
cond3 (q0,ql,q2) f = cond g0 (\z —
cond q1 (\y —
cond q2 (A\z —
f(2,9,2))))

The Quantum IO Monad

The Quantum IO Monad, or QIO is a monadic interface from Haskell to quan-
tum computation. More precisely, it is a library that allows you to define unitary
operators and effectful quantum computations, along with simulator functions
that allow you to run the quantum computations that you define. A lot of
information on QIO including its implementation are available online (see the
links on the course webpage). Installation of QIO is relatively straightforward



if you can make use of cabal (cabal is part of the Haskell platform, and as such
should already be installed on the machines in A32).

The following list of instructions will install Q10 on the windows machines
in A32 (but you may need to re-install it for every session). The following
commands should be entered in a command prompt:

e Set the http proxy in the current command prompt
set HTTP_PROXY=wwwcache.cs.nott.ac.uk:3128
e Make sure the cabal list of packages is up to date:
cabal update
e Install QIO (in your own user space, as you don’t have global permissions)
cabal install QIO --user

(note: if you don’t have a proxy, and you are using your own machine, then
you should just have to update the list of packages as above, and install the
QIO package without the —user flag)

If you are having difficulties installing QIO you can always download the
source from: http://www.cs.nott.ac.uk/ asg/QIO/ and import the files as nec-
essary. However, i would recommend this as a last resort, and suggest that you
contact me for support.

Information

The exercises set in the labs have a firm deadline of 12:00 (midday); Thursday
the 1st of April, but it is highly recommended that you submit your work on
a weekly basis (E.g. 1 week after the date each exercise sheet is released) to
enable you to receive ongoing feedback. I will give feedback for any exercises
submitted within 2 weeks of their original release date.

The weekly submissions should be emailed to me (asg@Qcs.nott.ac.uk), or
handed to me in the labs. The final submission of your portfolio will be through
the school office by 12:00 (midday) on Thursday the 1st of April (The last day
of the Spring term). The final submission through the school office should be
made even if you have been submitting work to me on a weekly basis as it is
this final submission that counts as your portfolio.

These exercise sheets should be attempted on your own, and at the end of
the course, it is these individual submissions that will make up your portfolio
project. Combined, the work submitted in your portfolio is worth 50% of the
mark for this module (The other 50% consisting of the research report and
presentation).



