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Introduction

I Thank you for the feedback last week...

I 2 main points were brought to my attention:
I Lecture content:

I I will try and slow down for the complicated bits
I Feel free to interrupt with questions

I Portfolio exercises:
I No exercise sheet this week (but labs as usual)
I Final exercise sheet will be released next week...
I Will be involved, but lots of time until deadline (1st of April)
I Feel free to email me with queries
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I Last week we looked at some of the more simple quantum
algorithms

I Superdense coding

I Quantum teleportation

I both make use of entanglement as a resource to achieve
unclassical results

I We started to look at Deutsch’s algorithm...

I and mentioned Deutsch-Jozsa

I but didn’t finish covering them, so lets get back to it!

I What about today?
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I We’re going to move on to two of the more famous quantum
algorithms...

I Grover’s algorithm
I Shor’s algorithm

I We’ll cover Grover’s algorithm today

I and start looking at Shor’s algorithm next week
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Part I

Grover’s Algorithm
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Grover’s Algorithm

Lov Grover

I A computer scientist working for
Bell labs

I came up with his algorithm in
1996

I Often desribed as an algorithm
for searching an unsorted
database

I It provides a quadratic speedup
over the fastest classical solution

I O(
√

N) compared to O(N)
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The classical problem

I You have a large unsorted database (with N distinct elements)

I You want to find a specific element a in the database

I How can you go about finding the element a?

I The best solution classically is to look at each element in the
database and see if it is a

I On average you will have to look through N
2 + 1 elements

I Lets reformulate the problem slightly...

I You’re given a Boolean function f with a domain of size
N = 2n, that only returns True for one element a

I On average, how many times must you call this function
before finding the element a?
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Grover’s Algorithm

I What if we can apply this function to a quantum state?

I E.g. if we have a unitary Uf :

|x0〉

Uf

|x0〉
|x1〉 |x1〉

...
...

|xn−1〉 |xn−1〉
|y〉 |y ⊕ f (x0, x1, . . . , xn−1)〉

I How many times must we apply this unitary before finding |a〉?
I Using Grover’s algorithm, we only need to apply it π

4

√
N times
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Searching

I Not an exponential speed up, but for large N any speed up is
good!

I But, is searching an unsorted database really that useful?

I and, does the database need to be quantum in some way?

I Grover’s algorithm has other uses...

I It can be used to find solutions to any problem that can be
re-expressed as a searching problem

I So, can be used to help find solutions to NP-Complete
problems

I These are problems which are believed to be unfeasible on
classical computers, but whose solutions can be verified
efficiently
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Searching

I E.g. the travelling salesman problem

I Given a list of cities, the pairwise distances between them,
and a tour around them, does a tour exist that is shorter than
the given one?

I A brute force solution would be to search every permutation
for a shorter one

I So, this can be treated as a searching problem

I and Grover’s Algorithm could give us a speed-up over the
fastest classical solution
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Grover’s Algorithm

I Lets look at how Grover’s algorithm works

I It is nice to think of what it is doing geometrically...

I and is often presented in this manner

I The first thing we should look at, is what happens if the last
input to the unitary Uf is in the state |−〉

I with an arbitrary state |x〉 = |x0, x1, . . . , xn−1〉 as the rest of
the input

I The entire input state can be thought of as |x〉 ⊗ |−〉
I and the output state will be...

I (−1)f (x) |x〉 ⊗ |−〉
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Grover’s Algorithm

I The last qubit is unchanged, and the component of |x〉 that
we’re looking for has had a negative phase added to it

I As the last qubit is unchanged, we can ignore it...
I defining the unitary operator V as having the behaviour

described above

I V |x〉 = (−1)f (x) |x〉 =

{
|x〉 , x 6= a
− |a〉 , x = a

I Grover’s Algorithm only requires one other unitary, which we
shall denote W

I In fact, W is quite similar to V , but doesn’t depend on the
search function f

I W |x〉 =

{
|φ〉 , x = φ
− |x〉 , x 6= φ

I where |φ〉 is an equal super-position of n qubits
I |φ〉 = H⊗n |0〉 = 1

2
n
2

∑2n−1
x=0 |x〉
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Grover’s Algorithm

I It may be easier to think of W in terms of −W , which would
only effect the outcome by a possible negative phase, and
hence not the measurement

I −W can be defined more easily using the computational basis

I −W = H⊗nW ′H⊗n where

W ′ |x〉 = (−1)x≡0 |x〉 =

{
|x〉 , x 6= 0
− |0〉 , x = 0

I giving the unitary operator W ′ which is even more closely
related to V

I We now have all the unitary operations that we require for
Grover’s algorithm

I We shall refer to the application of V followed by an
application of W as a Grover iteration

I Each iteration only calls the search function once

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Grover’s Algorithm

Grover’s Algorithm

I We can now use a geometric interpretation to show that after
only π

4

√
N Grover iterations, we can measure (with high

probability) to get the state |a〉
I In order to do this, we can notice that both V and W acting

on the states |a〉 and |φ〉 will return linear combinations of
those two states (with Real coefficients)

V |a〉 = − |a〉 V |φ〉 = |φ〉 − 2

2
n
2

|a〉

I Remembering that 〈α|β〉 = 〈β|α〉∗, we have
〈φ|a〉 = 〈a|φ〉 = 1

2
n
2

W |φ〉 = |φ〉 W |a〉 =
2

2
n
2

|φ〉 − |a〉
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Grover’s Algorithm

I If we start with the state |φ〉, and only perform combinations
of V and W , then we can visualise this on a plane spanned by
the states |a〉 and |φ〉

I The state |a⊥〉 contains all the states orthogonal to |a〉
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I For large N, |φ〉 is close to |a⊥〉
I We can calculate the angle θ using sinθ = 2

−n
2 = 1√

N

I Which for large N can be approximated to θ ≈ 2
−n
2

I We can now look at the behaviour of the unitary operations V
and W on this plane

I W leaves |φ〉 invariant, and reverses the direction of any
vector orthogonal to |φ〉

I V reverses the direction of |a〉 and leaves any vector
orthogonal to |a〉 unchanged
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Grover’s Algorithm

I V represents a reflection about the |a⊥〉 vector
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Grover’s Algorithm

I W represents a reflection about the |φ〉 vector

I Two reflections combine to form a rotation
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Grover’s Algorithm

I So, each Grover iteration rotates the state by an angle of 2θ

I Applying a Grover iteration to the state |φ〉 gives us a state
that sits 3θ from |a⊥〉

I Applying a Grover iteration again gives us a state that sits 5θ
from |a⊥〉

I and so on...

I We know that |a〉 is orthogonal to |a⊥〉, so we just need to
work out how many Grover iterations are required to get us a
close to |a〉 as possible

I Iterations required = π
2 .

1
2θ = π

4θ

I Since θ ≈ 2
−n
2 , this simplfies to π

4 2
n
2 = π

4

√
N

I We can check if we’ve measured the correct result with one
last call to the searching oracle
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Next week...

I Next week, we shall look at an example of Grover’s algorithm
over a search space of size N = 8

I and start to look at the most famous quantum algorithm...

I Shor’s algorithm

I It’s quite complicated, so we shall be spending the next two
weeks looking at it

I Remember, labs on Thursday!

I I hope to see you there

I Thank you
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