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Introduction

Introduction

I Last week we looked at reversible computation

I We are able to define reversible computations in terms of
circuits

I We introduced a set of gates that is universal for reversible
computation

I Today we shall be looking at how to extend this to quantum
computation

I First, we shall have a brief look at the history of quantum
computation
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Before quantum computation

I Quantum Mechanics studies the behaviour of energy and
matter at the atomic level

I Matter exhibits both wave-like and particle-like behaviour
I Wave-particle duality

I The Copenhagen interpretation allows us to describe the state
of particles as a wavefunction

I The amplitudes of a wavefunction correspond to the
probabilities of observing a particle in a specific state

I Can we model Quantum Mechanics on a computer?
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Quantum Computation

Richard Feynman

I Amongst other things...

I Gave a key-note lecture at the
California Institute of
Technology in May, 1981

I “Simulating Physics with
Computers”

I It was published in the
International Journal of Physics
in 1982
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Simulating Physics with Computers

I Feynman set a requirement that any simulator must follow:
I The number of computer elements required to simulate a large

physical system is only to be proportional to the space-time
volume of the physical system

I That is, the simulations cannot be exponential in their number
of simulated elements

I Or, they must relate to feasible computations

I Feynman first looked at classical Physics

I which can be descretised and simulated to arbitrary accuracy

I Possible to choose an accuracy that cannot be refuted by
experimental evidence

I But what about Quantum Mechanical systems?
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Simulating Quantum Mechanics

I The Copenhagen interpretation gives us wavefunctions with
complex valued amplitudes

I The state spaces grow exponentially with the number of
elements in the system

I We cannot simulate this formalism of quantum mechanics on
a classical system

I Is this the only formalism of quantum mechanics?
I Is there a way to discretise quantum systems?
I The Copenhagen interpretation gives us a way to model

quantum systems based on experimental observations
I but is nature really probabilistic?
I Maybe there is more information than we can currently

observe, which would give us the ability to predict the
behaviour of quantum systems deterministically
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EPR paradox

Albert Einstein Boris Podolsky Nathan Rosen

The EPR paradox
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What is the EPR paradox?

I A thought experiment introduced in 1935

I arguing that quantum mechanics isn’t a complete theory

I Specifically, quantum mechanics can predict a breakdown in
locality

I The experiment involves two specially prepared particles that
are then seperated by an arbitrarily large distance

I quantum mechanics predicts that measuring one of these
particles can instantaneously influence the state of the other
particle

I The authors refused to believe this, and presented it as an
argument that quantum mechanics is incomplete

I Einstein famously refered to the effect as “spooky action at a
distance”
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On the EPR paradox

John S. Bell

I Wrote a paper titled “On the
Einstein Podolsky Rosen
paradox”

I Looking at whether quantum
mechanics can be described
using local hidden variables

I The paper introduced what is
now known as Bell’s Theorem
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Bell’s Theorem

I Bell proved that the results predicted by quantum mechanics
could not be preserved by any theory which preserved locality

I That is, he showed that if you could perform the experiment
described in the EPR paradox and you got the results
predicted by quantum mechanics then locality can’t be true
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Bell’s Theorem

N. David Mermin

I Author of the course text
book...

I and a very accesible paper on
Bell’s theorem and the EPR
thought experiment

I “Bringing home the atomic
world: Quantum mysteries for
anybody”

I We shall now have a brief look
at this proof
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Mermin’s proof

I The experiment involves a source of particles

I and two identical detectors that measure some aspect of the
particles

I When a particle is detected the detector outputs one of two
results

I Mermin uses Red and Green lights, but we will use 0 and 1

I We can try running the experiments to learn about what it is
that the detector is measuring

I Each of the detectors (A and B) can be in any of three
different modes (0, 1, or 2)

I Each mode measures some different aspect of the particles
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Mermin’s proof

I If we set both detectors to the same setting, and measure the
same particle twice then the results will always agree

I If we set the detectors to different settings, this will give
results that sometimes agree and sometimes disagree

I At this point we can say that each particle must be in one of
eight different states, corresponding to the possible outcomes
of measurements in each of the three settings

I 000,001,010,011,100,101,110,111

I We can now change the experiment, and introduce the
concept of locality

I The source is now able to send out two particles in opposite
directions

I The detectors are placed such that each one will recieve a
single particle from the source
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Mermin’s proof

I Locality now tells us that once the two particles have left the
source, they can no longer influence one another

I First, what happens if both detectors have the same setting?

I In our experiments, we notice that the measurements always
agree

I That is, that the source must emit particles that share the
same properties

I What happens if the detectors have different settings?

I Can we predict what the outcomes will be?

I Lets look at all possible detector settings, and whether both
measurements agree
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000

0 1 2
0 1 1 1
1 1 1 1
2 1 1 1

001

0 1 2
0 1 1 0
1 1 1 0
2 0 0 1

010

0 1 2
0 1 0 1
1 0 1 0
2 1 0 1

011

0 1 2
0 1 0 0
1 0 1 1
2 0 1 1

100

0 1 2
0 1 0 0
1 0 1 1
2 0 1 1

101

0 1 2
0 1 0 1
1 0 1 0
2 1 0 1

110

0 1 2
0 1 1 0
1 1 1 0
2 0 0 1

111

0 1 2
0 1 1 1
1 1 1 1
2 1 1 1
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Mermin’s proof

I If we repeat the experiment with random settings on each
detector we would expect to have matching measurements
with a probability of at least 5

9

I We can now run the experiment and see if the predictions are
correct

I Running the experiment only gives matching measurements
with probability 1

2

I If we can build such a device, then locality doesn’t hold

I Can we build such a device?

I Such devices have been built using quantum systems, and
these results have been verified

I We will look at this experiment in QIO next week
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Back to Richard Feynman’s talk

I Feynman concluded that quantum mechanical systems can
not be simulated on classical computers

I How can we simulate quantum mechanical systems?

I Feynman introduced the concept of a computer that is able to
use quantum mechanical phenomena

I Describing a system he called the universal quantum simulator

I This is now thought of as the first suggestion of a quantum
computer

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



A brief history of quantum computation
Simulating Physics with Computers

Feynman
Quantum computers

Quantum computers

I Since Feynman, the field of quantum computation has
matured

I In 1985, David Deutsch showed that any quantum mechanical
system could be simulated with a collection of two-state
quantum systems, along with a set of simple operations

I These two-state quantum systems are now known as quantum
bits

I or Qubits
I or Qbits in the course text book

I The operations on qubits are now known as quantum gates

I Quantum gates generalise the idea of Boolean logic gates over
qubits
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Qubits

I So, what are qubits?
I Qubits are a generalisation of classical bits into the quantum

realm
I Classical bits can only exist in one of two states
I Qubits can exist in a superposition of the same two states
I or in other words, a linear combination of |0〉 and |1〉
I In general, the state of a qubit can be given by

|ψ〉 = α |0〉+ β |1〉

I with α, β ∈ C
I and the normalisation condition |α|2 + |β|2 = 1
I The normalisation condition corresponds to the fact that |ψ〉

is a unit vector in the complex vector space
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Dirac notation again

I So, qubit states are represented by unit vectors in the complex
vector space

I Lets look at what this means in more detail...

I First, a little bit more linear algebra
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Classical states

Euclid

I We can think of the
2-Dimensional vector space,
over the real numbers, in terms
of geometry

I This extends well to the
3-Dimensional real valued vector
space too

I In fact, these type of vector
space are known as Euclidean
spaces

I But what about the complex
vector spaces we need for
qubits?
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Quantum states

David Hilbert

I Hilbert generalised the notion of
Euclidean space

I Introducing what are now
known as Hilbert spaces

I extending the ideas in R2 and
R3 to vector spaces of upto
infinite dimensions, over real or
complex numbers

I We shall be restricting ourselves
to finite dimensional Hilbert
spaces
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Hilbert space

A Hilbert space is a real or complex valued vector space with an
inner-product that must satisfy the following conditions:

I 〈y , x〉 = 〈x , y〉 (conjugate symmetry)

I 〈ax1 + bx2, y〉 = a 〈x1, y〉+ b 〈x2, y〉 (linear in first argument)

I 〈x , x〉 > 0 (positive definite)

I Hilbert spaces must also be complete, but this is enforced by
restricting ourselves to finite dimensions.
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R2 is a Hilbert space

I Euclidean space, with dot product as the inner product forms
a Hilbert space

I 〈x , y〉 = x .y = xT y

I Conjugate symmetry? x .y = y .x

I Linear in first argument? (ax1 + bx2).y = ax1.y + bx2.y

I Positive definite? x .x > 0
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C2 is a Hilbert space

I The 2-Dimensional complex vector space, forms a Hilbert
space with the following definition of inner product

I 〈x , y〉 = x∗y

I Conjugate symmetry? Check

I Linear in first argument? Check

I Positive definite? Check
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What does Inner product denote?

I Inner product denotes the amplitude of the first state within
the second

I For example, if we have the state |ψ〉 = α |0〉+ β |1〉

I we can rewrite this as |ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
I 〈0, ψ〉 = [1, 0]

[
α
β

]
= α

I 〈1, ψ〉 = [0, 1]

[
α
β

]
= β

I How can we visualise the states of a qubit?
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The Bloch sphere

Felix Bloch

I A swiss physicist whose work
influenced a geometric
interpretation of qubit states

I We now call this interpretation
the Bloch sphere

I But how can we visualise a
qubit as a sphere?
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The Bloch sphere

I An arbitrary qubit state, |ψ〉 = α |0〉+ β |1〉 can be rewritten,
introducing a global multiplier that means the coeffiecient for
|0〉 is real and non-negative

I E.g. The state −i√
2
|0〉+ i√

2
|1〉 = −i( 1√

2
|0〉+ −1√

2
|1〉)

I This global multiplier is known as global phase and it turns
out that this doesn’t effect measurement outcomes (we’ll look
more at this next week)

I We are now able to re-write our state |ψ〉 = α′ |0〉+ β′ |1〉 in
the form |ψ〉 = cos( θ

2) |0〉+ e iφsin( θ
2) |1〉

I θ = 2cos−1(α′)

I φ = Im(ln( β′

sin( θ
2
)
))
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The Boch sphere

I Except for the vectors |0〉 and |1〉 we are left with unique θ
and φ with 0 6 θ 6 π and 0 6 φ 6 2π

I These angles represent a unique point on the unit sphere

I Let try it for 1√
2
|0〉+ −1√

2
|1〉

I θ = 2cos−1( 1√
2

) = π
2

I φ = Im(ln(
1√
2

sin(π
4
))) = π
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Measurement

I Unfortunately, there is now way to measure the state of an
arbitrary qubit

I Why is this?

I Born’s rule tells us that measuring a quantum system
collapses the wave function!

I What does this mean?

I If we look at, or measure, the state of a qubit then we only
ever get see one of the base states, |0〉 or |1〉

I and, the qubit is collapsed into that state!

I Fortunately, we can use the amplitudes of a qubit to give us
the probabilities of measuring either state
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Measurement

I If we measure a qubit in an arbitrary super-position
ψ = α |0〉+ β |1〉 we are left with |0〉 with probability |α|2 or
|1〉 with probability |β|2

I For example, if we have the state |+〉 = 1√
2

(|0〉+ |1〉) then we

will measure |0〉 ot |1〉 both with probability 1
2

I |+〉 is said to be in an equal super-position

I What else can we do with qubits, that doesn’t collapse their
wave function?
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What else can we do with Qubits?

I So, the states of a qubit can be thought of as a point on
Bloch sphere

I Single qubit gates can be thought of as rotations about the
Bloch sphere

I As the state space of a qubit is continuous, this means there
are an infinte number of possible one-qubit gates

I Any complex valued unitary 2x2 matrix represents a single
qubit gate

I A set of gates is said to be universal if it can simulate any
gate upto an arbitrary accuracy

I We’ll look now at some popular gates...
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Hadamard rotation

I The Hadamard gate is named in honour of French
mathematician Jacques Hadamard

I It is an important gate as it takes the base states |0〉 and |1〉
into equal super-positions

I The Hadamard gate is given by 1√
2

[
1 1
1 −1

]
I |0〉 → 1√

2
(|0〉+ |1〉)

I |1〉 → 1√
2

(|0〉 − |1〉)
I It also has the property that it is its own inverse
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Pauli rotations

Wolfgang Pauli

I Came up with an important set
of gates

I Known as the Pauli-X, Pauli-Y
and Pauli-Z gates

I or X, Y and Z for short

I They are all self inverse, and
correspond to rotations about
the axis they are named after
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Pauli rotations

I X =

[
0 1
1 0

]
I X corresponds to the classical negation operation

I Y =

[
0 −i
i 0

]
I Z =

[
1 0
0 −1

]
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Qubits in QIO

I Operations on single qubits aren’t that interesting

I We shall look at multiple-qubit gates next week

I and introduce the concept of Entanglement

I The labs this week will involve using QIO to define some
single qubit quantum computations, so we shall have a brief
look now at QIO

I We have already seen how we can use the classical subset of
QIO and this extends nicely into the quantum realm.

I Quantum computations consist of the same three steps as
reversible computations:

I Initialise any qubits that are required
I Perform unitary operations on these qubits
I Measure any qubits that form part of the result
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Initialisation

I We initialise qubits in the same way as we initialised bits for
the reversible computations

I Now, mkQbit False returns a qubit initialised to |0〉
I and mkQbit True returns a qubit initialised to |1〉
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Unitary operations

I We shall be looking at unitary operations on single qubits in
this weeks labs

I The exercise sheet shall introduce new members of the U
data-type that can be used within Quantum computations

I We will be implementing all the rotations described previously.

I Applying a unitary is still done with the applyU function.
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Measurement

I Measurement is also done in a simlar manner as for reversible
computation

I measQbit q returns a Boolean that represents the base state
that the qubit q has collapsed into

I Measurements are probabilistic, with the probabilities relating
to the amplitudes of the qubit

I We’ll see next week that measurements can have side effects,
which gives rise to the monadic structure of QIO

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Qubits
Measurement

Unitary operators

Running QIO computations

I Quantum computations cannot be simulated efficiently on a
classical computer

I However, two simulation functions are provided that can be
used for all the programs we are likely to define

I They reside in the QIO.Qio library file

I run :: QIO a→ IO a

I run uses the random number generator to simulate
probabilistic results

I sim :: QIO a→ Prob a

I sim returns a probability distribution of all possible results
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Thank you

I Remember... labs are on Thursdays, 15:00 to 17:00 in A32

I Also, Friday is the deadline for choosing your pairs and topics
for the Research paper and presentation

I If I haven’t heard from you before then, I will assign them for
you!

I Thank you
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