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Introduction

I Last week we looked a little at Simon’s algorithm

I Simon’s algorithm is an example of a period finding
algorithm...

I finding the period r for a function f defined such that
f (x ⊕ r) = f (x)

I The period r can be extracted from the superposition
1√
2

(|x0〉+ |x0 ⊕ r〉) using Hadamard rotations.

I We then started looking at Shor’s factorisation algorithm...

I which it turns out is also a period finding problem
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Introduction

I If we can calculate the period r of a function
f (x) = bx (modN), we can factorise N...

I where b is a random integer coprime to N
I and the period has two special properties
I (which it will have with probability at least 1

2 for a random
choice of b)

I So, there are two things we need to be able to do...

I First, we need to construct a unitary that can calculate
f (x) = bx (modN) over a quantum state

I Second, we need to be able to somehow extract the period r
from the superposition 1√

m

∑m−1
k=0 |x0 + kr〉

I Where m is the smallest integer such that mr + x0 > 2n
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Introduction

I So, can we do these two things?

I Yes, and we shall be looking at how to do them in the rest of
today’s lecture

I The first problem is just an exercise in reversible arithmetic
circuits

I The second problem uses the quantum Fourier transform

I So we shall look at Fourier transforms, and the quantum
Fourier transform in some detail

I We shall also go over a specific example of Shor’s algorithm
for N = 15

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Reversible Arithmetic

Part I

Reversible Arithmetic
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Addition and Subtraction

I We have already seen a circuit that performs addition in a
reversible manner...

I and how we can model it using QIO (exercise sheet 2)

I Although we only used the circuit with classical states, using
runC and the classical subset of QIO

I It shouldn’t be a surprise that we can use the same circuit (or
unitary operator) over a quantum state.

I Lets have a look...

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

cin

fa

cin

ai ai

bi si = ai ⊕ bi ⊕ cin
� cout = (ai ∧ bi )⊕ (cin ∧ (ai ⊕ bi ))

cin

uc

cin

ai ai

si = ai ⊕ bi ⊕ ci si

(ai ∧ bi )⊕ (cin ∧ (ai ⊕ bi )) �
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

�

fa

. . . . . .

uc

�

a0 . . . . . . a0

b0
. . . . . . s0

�

fa

. . . . . .

uc

�

a1 . . . . . . a1

b1
. . . . . . s1

�

fa

. . . . . .

uc

�

. . . . . .

. . . . . .

. . . . . .
...

...
...

...
...

...
...

...
...

...
.... . .

fa uc

. . .
an−1 . . . . . . an−1

bn−1 . . . . . . sn−1
� . . . • . . . �

� . . . X . . . overflow
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I We can simplify the notation for the reversible addition circuit

|a〉n
add

|a〉n
|b〉n |a + b〉n

�
overflow

I We can think of this as the unitary
adder :: [Qbit ]→ [Qbit ]→ Qbit → U in QIO

I and note that we get subtraction for free...

I What happens if |a〉 or |b〉 are quantum states?
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I For example, if the input |a〉 = 1√
2

(|2〉+ |3〉) and the input

|b〉 = 1√
2

(|4〉+ |5〉)
I What is the output?
I We end up with four additions taking place in parallel...

I |2 + 4〉 = |6〉
I |2 + 5〉 = |7〉
I |3 + 4〉 = |7〉
I |3 + 5〉 = |8〉

I We are left with the superposition 1
2(|6〉+ 2 |7〉+ |8〉)

I Any arithmetic circuits we define in the classical subset of
QIO can be used over a quantum state.
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I So, can we construct a unitary that performs modular
exponentiation as required in Shor’s algorithm?

I In fact, there’s only three steps to get from reversible addition
to reversible modular exponentiation...

I We can use reversible addition to construct reversible modular
addition

I We can use reversible modular addition to construct reversible
modular multiplication

I We can use reversible modular multiplication to construct
reversible modular exponentiation

I Lets look at some circuits...
I They are taken from the paper “quantum networks for

elementary arithmetic operations” that is linked from the
module web page
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular addition

|a〉n
add

&&&&&

sub

0

add

0
&&&&&

sub add

|a〉n
|b〉n

''''

�����
''''

����� |c〉n
�

����
))) ����	
� ����

))) • overflow

|N〉n
���

��� |N〉n
�

X • • X
�

I Where c = a + b (mod N)
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular addition

I For Shor’s algorithm, we only need N to be a classical value...

I the number we are trying to factor

I We can define the circuit for reversible addition modulo N,
with N as an implicit argument

|a〉n
addN

|a〉n
|b〉n |a + b (mod N)〉n

�
overflow
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular multiplication

|x0〉 • • . . . |x0〉
|x1〉 • • . . . |x1〉

...
...

...
...

...
...

...
...

...
...

...
...

...
...|xn−1〉 . . . • • |xn−1〉

|0〉n
�

20a

addN

0 21a

addN

0 . . . 2n−1a

addN

0
� |0〉n

|0〉n . . . |y〉n
� . . . overflow

I Where y = a× x (mod N)

I Again, the argument a can be classical, and built implicitly
into the circuit.
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular multiplication

I We can simplify the notation for multiplication by a modulo N

|x〉n
a×N

|x〉n
|0〉n |a× x (mod N)〉n

�
overflow

I Using a controlled version of modular multiplication, we can
now construct the necessary modular exponentiation unitary.
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular exponentiation

|x0〉 • • . . . |x0〉

|x1〉 • • . . . |x1〉

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
|xn−1〉 . . . • • |xn−1〉

|1〉n

a20
×N

''''

a−20
×−1

N a21
×N

''''

a−21
×−1

N

. . .

a2n−1
×N

''''

a−2n−1
×−1

N

|ax (mod N)〉n

|0〉n

����

���� . . .

���� |0〉n

� . . . overflow
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Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular exponentiation

I The powers of a can be calculated (efficiently) classically

I We can choose n so that overflow isn’t a problem and can be
ignored

I Giving us a reversible modular exponential function, that can
be used over a quantum state as required by Shor’s algorithm

|x〉n • |x〉n
|1〉m ax (mod N) |ax (mod N)〉m

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation



Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Part II

The Quantum Fourier Transform
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Fourier transforms

Joseph Fourier

I A French mathematician and
physicist

I Discovered what we now call
Fourier series

I The Fourier transform is named
in his honour
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Fourier transforms

I Fourier showed that periodic functions could be decomposed
in to the sum of simple sine and cosine functions

I The Fourier transform is able to calculate such a
decomposition

I It is often said to take functions from the time domain to the
frequency domain

I Fourier transforms are already used extensively in classical
computation

I But even the fastest implementation (known as the Fast
Fourier Transform) is exponential in its arguments

I Its uses include...
I Image compression (JPEG)
I Audio compression
I Noise reduction techniques
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The discrete Fourier transform

I The disrete Fourier transform takes a set of Complex
arguments to a set of Complex results

I The Fourier transform from the vector x0, . . . , xN−1 to the
vector y0, . . . , yN−1 is defined by

yk =
1√
N

N−1∑
j=0

xje
2πijk

N

I If we look at Euler’s formula, we can see how this is a sum of
sine and cosine functions

e iθ = cosθ + i sinθ

I Note that each element of y is calculated using every element
of x
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I The quantum Fourier transform is the discrete Fourier
transform applied to the amplitudes of a quantum state

I It is a unitary transform, which we will prove by providing a
circuit made from unitary gates

I It is also efficient, with the number of gates required only
polynomial in the number of qubits

I It doesn’t provide an efficient means for calculating an
arbitrary Fourier transform as it only acts on the amplitudes of
the quantum state, and not the states themselves

I It has a similar definition to the discrete Fourier transform

|j〉 → 1√
N

N−1∑
k=0

e
2πijk

N |k〉

I We can simplify matters by restricting N = 2n
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I We can rewrite the quantum Fourier transform in terms of the
binary expansion of j

j = j02n−1 + j12n−2 + . . .+ jn−120

I and similar notation for a binary fraction of j

0.jl jl+1 . . . jm =
jl
2

+
jl+1

4
+ . . .+

jm
2m−l+1

I Such that the quantum Fourier transform can be given by

|j0, j1, . . . , jn−1〉 →
(|0〉 + e

2πi0.jn−1 |1〉)⊗ (|0〉 + e
2πi0.jn−2 jn−1 |1〉)⊗ . . .⊗ (|0〉 + e

2πi0.j0 j1...jn−1 |1〉)

2
n
2

I The full derivation of this product representation can be found
in the Nielsen and Chuang book (p.218)
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I It is actually suggested that you treat this as the definition of
the quantum Fourier transform

I The output state of each qubit is an equal superposition of |0〉
and |1〉, with a phase applied to the |1〉 part that depends on
the input states.

I The phase of each qubit in the output state depends on one
more member of the input state than the previous qubit...

I E.g. the state of the first output qubit ( 1

2
n
2

(|0〉+ e2πi0.jn |1〉))

only depends on upon the last input qubit

I and the state of the second output qubit
( 1

2
n
2

(|0〉+ e2πi0.jn−1jn |1〉)) depends on the last two input

qubits...
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I How can we construct a circuit that performs this operation?

I We can use a Hadamard to create the equal superposition,
and then perform controlled phase operations depending on
the necessary input qubits

I E.g. the Hadamard gate takes an input qubit |jm〉 to the state
1√
2

(|0〉+ e2πi0.jm |1〉)
I and we can create a controlled version of the phase rotation

Rk =

[
1 0

0 e
2πi

2k

]
I The following circuit performs the quantum Fourier transform,

although the output qubits are in reverse order
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉 + e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉 + e2πi0.j2...jn |1〉
.
.
.

.

.

.

.

.

.

.

.

.
|jn−1〉 · · · • · · · • · · · H R2 |0〉 + e

2πi0.jn−1 jn |1〉

|jn〉 · · · • · · · • · · · • H |0〉 + e2πi0.jn |1〉

I The output can be reversed using swap operations

I We also get the inverse quantum Fourier transform for free

I Which is what we use in Shor’s algorithm
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Using the QFT

I How can we use the quantum Fourier transform to extract the
period of the function bx (mod N)?

I We use a procedure known as phase estimation

I If we have a superposition of states

1

2
t
2

2t−1∑
j=0

e2πiϕj |j〉n |u〉m

I we can apply the inverse quantum Fourier transform and get
the state

|ϕ̂〉n |u〉m
I Where ϕ̂ is an approximation of ϕ to n bits
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

QFT and Shor’s algorithm

I This is used in Shor’s algorithm by noticing

1√
2t

2t−1∑
j=0

|j〉 |x jmodN〉 ≈ 1√
r2t

r−1∑
s=0

2t−1∑
j=0

e2πij s
r |j〉 |us〉

I Where

|us〉 =
1√
r

r−1∑
k=0

e
−2πisk

r |xkmodN〉

I Applying the inverse quantum Fourier transform to this state
will give

1√
r

r−1∑
s=0

| ˆ
(
s

r
)〉 |us〉

I so we can measure an integer result ϕ = ( ŝ
r )
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The continued fractions algorithm

I We know ϕ upto n bits, and can use the continued fractions
algorithm for ϕ

2n to calculate r
I The continued fractions algorithm is an efficient classical

algorithm
I So, to recap, the quantum part of Shor’s algorithm can be

given as the following circuit

|0〉n H⊗n
|k〉

• QFT † ?>=<89:;M ϕ = ˆ( s
r )

|1〉m akmodN

I the convergent of the continued fraction for ϕ
2n gives s

r
I As we only know ϕ to n bits, we need to choose n as at least

2m + 1 + dlog(2 + 1
2ε)e so we have probability 1− ε of finding

r , where m is the number of bits needed to specify N
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I Lets look at a concrete example...
I Factorising N = 15 using Shor’s algorithm
I Step 1: pick a random number (b) that is coprime to 15
I This could be any of 2, 4, 7, 8, 11, 13, or 14
I Lets choose b = 7
I Step 2: construct the unitary for the function

f (x) = 7x (mod 15)
I To do this, we need to specify m and n, the number of qubits

in each register.
I m is the number of bits needed to specify N, so m = 4
I n = 2m + 1 + dlog(2 + 1

2ε)e
I For an error of at most ε = 1

4 we can calculate
n = 2 ∗ 4 + 1 + dlog(2 + 1

2
4

)e = 8 + 1 + 2 = 11
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I Step 3: Apply the unitary f (x) = 7x (mod 15) to the state
1√
2n

∑2n−1
k=0 |k〉n |0〉m

I leaving the state 1√
2n

∑2n−1
k=0 |k〉n |7k (mod 15)〉m

I =
1√
2n [|0〉 |1〉+|1〉 |7〉+|2〉 |4〉+|3〉 |13〉+|4〉 |1〉+. . .+|2047〉 |13〉]

I Step 4: Measure the second register

I This will leave (with equal probability) either 1, 7, 4, or 13

I In this instance, we measured a 4

I Leaving the state
√

4
2n [|2〉+ |6〉+ . . .+ |2046〉]

I Step 5: Apply the inverse QFT and measure the result
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I The inverse QFT leaves the following probability distribution

I We can see that each of the states 0, 512, 1024, or 1536 could
be measured with almost probability 1

4 each

I In this instance, we measured ϕ = 1536

I We can now calculate r , as s
r is the convergent of the

continued fraction for 1536
2048
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I The convergent is 3
4 so we have r = 4

I Step 6: Check properties of r , and calculate the factors
I 4 is even, so that is ok
I x = 7

4
2 (mod15) = 4

I x + 1 6= 0(mod15), so that is ok

I Factors are gcd(x − 1, 15) and gcd(x + 1, 15)
I gcd(x − 1, 15) = gcd(3, 15) = 3
I gcd(x + 1, 15) = gcd(5, 15) = 5

I So, the factors of 15 are 3 and 5
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Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Thank you

I Remember, presentations start next week...

I Attendance will be taken!

I Submission deadline for your paper is 12:00 (midday) this
Friday

I I will make copies of all the papers available after this

I Labs on Thursday as usual...

I Thank you.
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