
G53NSC and G54NSC
Non-Standard Computation

Dr. Alexander S. Green

16th of March 2010

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Introduction

I Last week we looked a little at Simon’s algorithm

I Simon’s algorithm is an example of a period finding
algorithm...

I finding the period r for a function f defined such that
f (x ⊕ r) = f (x)

I The period r can be extracted from the superposition
1√
2

(|x0〉+ |x0 ⊕ r〉) using Hadamard rotations.

I We then started looking at Shor’s factorisation algorithm...

I which it turns out is also a period finding problem

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Introduction

I If we can calculate the period r of a function
f (x) = bx (modN), we can factorise N...

I where b is a random integer coprime to N
I and the period has two special properties
I (which it will have with probability at least 1

2 for a random
choice of b)

I So, there are two things we need to be able to do...

I First, we need to construct a unitary that can calculate
f (x) = bx (modN) over a quantum state

I Second, we need to be able to somehow extract the period r
from the superposition 1√

m

∑m−1
k=0 |x0 + kr〉

I Where m is the smallest integer such that mr + x0 > 2n

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Introduction

I So, can we do these two things?

I Yes, and we shall be looking at how to do them in the rest of
today’s lecture

I The first problem is just an exercise in reversible arithmetic
circuits

I The second problem uses the quantum Fourier transform

I So we shall look at Fourier transforms, and the quantum
Fourier transform in some detail

I We shall also go over a specific example of Shor’s algorithm
for N = 15

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Part I

Reversible Arithmetic

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Addition and Subtraction

I We have already seen a circuit that performs addition in a
reversible manner...

I and how we can model it using QIO (exercise sheet 2)

I Although we only used the circuit with classical states, using
runC and the classical subset of QIO

I It shouldn’t be a surprise that we can use the same circuit (or
unitary operator) over a quantum state.

I Lets have a look...

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

cin

fa

cin

ai ai

bi si = ai ⊕ bi ⊕ cin
� cout = (ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi))

cin

uc

cin

ai ai

si = ai ⊕ bi ⊕ ci si

(ai ∧ bi)⊕ (cin ∧ (ai ⊕ bi)) �

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

�

fa

.

uc

�

a0 a0

b0
. s0

�

fa

.

uc

�

a1 a1

b1
. s1

�

fa

.

uc

�

.

.

.
...

...
...

...
...

...
...

...
...

...
.... . .

fa uc

. . .
an−1 an−1

bn−1 sn−1
� . . . • . . . �

� . . . X . . . overflow

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I We can simplify the notation for the reversible addition circuit

|a〉n
add

|a〉n
|b〉n |a + b〉n

�
overflow

I We can think of this as the unitary
adder :: [Qbit]→ [Qbit]→ Qbit → U in QIO

I and note that we get subtraction for free...

I What happens if |a〉 or |b〉 are quantum states?

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I For example, if the input |a〉 = 1√
2

(|2〉+ |3〉) and the input

|b〉 = 1√
2

(|4〉+ |5〉)
I What is the output?
I We end up with four additions taking place in parallel...

I |2 + 4〉 = |6〉
I |2 + 5〉 = |7〉
I |3 + 4〉 = |7〉
I |3 + 5〉 = |8〉

I We are left with the superposition 1
2(|6〉+ 2 |7〉+ |8〉)

I Any arithmetic circuits we define in the classical subset of
QIO can be used over a quantum state.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Quantum Arithmetic

I So, can we construct a unitary that performs modular
exponentiation as required in Shor’s algorithm?

I In fact, there’s only three steps to get from reversible addition
to reversible modular exponentiation...

I We can use reversible addition to construct reversible modular
addition

I We can use reversible modular addition to construct reversible
modular multiplication

I We can use reversible modular multiplication to construct
reversible modular exponentiation

I Lets look at some circuits...
I They are taken from the paper “quantum networks for

elementary arithmetic operations” that is linked from the
module web page

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular addition

|a〉n
add

&&&&&

sub

0

add

0
&&&&&

sub add

|a〉n
|b〉n

''''

�����
''''

����� |c〉n
�

����
))) ����	
� ����

))) • overflow

|N〉n
���

��� |N〉n
�

X • • X
�

I Where c = a + b (mod N)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular addition

I For Shor’s algorithm, we only need N to be a classical value...

I the number we are trying to factor

I We can define the circuit for reversible addition modulo N,
with N as an implicit argument

|a〉n
addN

|a〉n
|b〉n |a + b (mod N)〉n

�
overflow

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular multiplication

|x0〉 • • . . . |x0〉
|x1〉 • • . . . |x1〉

...
...

...
...

...
...

...
...

...
...

...
...

...
...|xn−1〉 . . . • • |xn−1〉

|0〉n
�

20a

addN

0 21a

addN

0 . . . 2n−1a

addN

0
� |0〉n

|0〉n . . . |y〉n
� . . . overflow

I Where y = a× x (mod N)

I Again, the argument a can be classical, and built implicitly
into the circuit.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular multiplication

I We can simplify the notation for multiplication by a modulo N

|x〉n
a×N

|x〉n
|0〉n |a× x (mod N)〉n

�
overflow

I Using a controlled version of modular multiplication, we can
now construct the necessary modular exponentiation unitary.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular exponentiation

|x0〉 • • . . . |x0〉

|x1〉 • • . . . |x1〉

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
|xn−1〉 . . . • • |xn−1〉

|1〉n

a20
×N

''''

a−20
×−1

N a21
×N

''''

a−21
×−1

N

. . .

a2n−1
×N

''''

a−2n−1
×−1

N

|ax (mod N)〉n

|0〉n

����

���� . . .

���� |0〉n

� . . . overflow

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Reversible Arithmetic

Addition and Subtraction
Modular addition
Modular addition
Modular multiplication
Modular exponentiation

Modular exponentiation

I The powers of a can be calculated (efficiently) classically

I We can choose n so that overflow isn’t a problem and can be
ignored

I Giving us a reversible modular exponential function, that can
be used over a quantum state as required by Shor’s algorithm

|x〉n • |x〉n
|1〉m ax (mod N) |ax (mod N)〉m

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Part II

The Quantum Fourier Transform

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Fourier transforms

Joseph Fourier

I A French mathematician and
physicist

I Discovered what we now call
Fourier series

I The Fourier transform is named
in his honour

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Fourier transforms

I Fourier showed that periodic functions could be decomposed
in to the sum of simple sine and cosine functions

I The Fourier transform is able to calculate such a
decomposition

I It is often said to take functions from the time domain to the
frequency domain

I Fourier transforms are already used extensively in classical
computation

I But even the fastest implementation (known as the Fast
Fourier Transform) is exponential in its arguments

I Its uses include...
I Image compression (JPEG)
I Audio compression
I Noise reduction techniques

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The discrete Fourier transform

I The disrete Fourier transform takes a set of Complex
arguments to a set of Complex results

I The Fourier transform from the vector x0, . . . , xN−1 to the
vector y0, . . . , yN−1 is defined by

yk =
1√
N

N−1∑
j=0

xje
2πijk

N

I If we look at Euler’s formula, we can see how this is a sum of
sine and cosine functions

e iθ = cosθ + i sinθ

I Note that each element of y is calculated using every element
of x

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I The quantum Fourier transform is the discrete Fourier
transform applied to the amplitudes of a quantum state

I It is a unitary transform, which we will prove by providing a
circuit made from unitary gates

I It is also efficient, with the number of gates required only
polynomial in the number of qubits

I It doesn’t provide an efficient means for calculating an
arbitrary Fourier transform as it only acts on the amplitudes of
the quantum state, and not the states themselves

I It has a similar definition to the discrete Fourier transform

|j〉 → 1√
N

N−1∑
k=0

e
2πijk

N |k〉

I We can simplify matters by restricting N = 2n

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I We can rewrite the quantum Fourier transform in terms of the
binary expansion of j

j = j02n−1 + j12n−2 + . . .+ jn−120

I and similar notation for a binary fraction of j

0.jl jl+1 . . . jm =
jl
2

+
jl+1

4
+ . . .+

jm
2m−l+1

I Such that the quantum Fourier transform can be given by

|j0, j1, . . . , jn−1〉 →
(|0〉 + e

2πi0.jn−1 |1〉)⊗ (|0〉 + e
2πi0.jn−2 jn−1 |1〉)⊗ . . .⊗ (|0〉 + e

2πi0.j0 j1...jn−1 |1〉)

2
n
2

I The full derivation of this product representation can be found
in the Nielsen and Chuang book (p.218)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I It is actually suggested that you treat this as the definition of
the quantum Fourier transform

I The output state of each qubit is an equal superposition of |0〉
and |1〉, with a phase applied to the |1〉 part that depends on
the input states.

I The phase of each qubit in the output state depends on one
more member of the input state than the previous qubit...

I E.g. the state of the first output qubit (1

2
n
2

(|0〉+ e2πi0.jn |1〉))

only depends on upon the last input qubit

I and the state of the second output qubit
(1

2
n
2

(|0〉+ e2πi0.jn−1jn |1〉)) depends on the last two input

qubits...

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

I How can we construct a circuit that performs this operation?

I We can use a Hadamard to create the equal superposition,
and then perform controlled phase operations depending on
the necessary input qubits

I E.g. the Hadamard gate takes an input qubit |jm〉 to the state
1√
2

(|0〉+ e2πi0.jm |1〉)
I and we can create a controlled version of the phase rotation

Rk =

[
1 0

0 e
2πi

2k

]
I The following circuit performs the quantum Fourier transform,

although the output qubits are in reverse order

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The quantum Fourier transform

|j1〉 H R2 · · · Rn−1 Rn · · · · · · |0〉 + e2πi0.j1...jn |1〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉 + e2πi0.j2...jn |1〉
.
.
.

.

.

.

.

.

.

.

.

.
|jn−1〉 · · · • · · · • · · · H R2 |0〉 + e

2πi0.jn−1 jn |1〉

|jn〉 · · · • · · · • · · · • H |0〉 + e2πi0.jn |1〉

I The output can be reversed using swap operations

I We also get the inverse quantum Fourier transform for free

I Which is what we use in Shor’s algorithm

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Using the QFT

I How can we use the quantum Fourier transform to extract the
period of the function bx (mod N)?

I We use a procedure known as phase estimation

I If we have a superposition of states

1

2
t
2

2t−1∑
j=0

e2πiϕj |j〉n |u〉m

I we can apply the inverse quantum Fourier transform and get
the state

|ϕ̂〉n |u〉m
I Where ϕ̂ is an approximation of ϕ to n bits

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

QFT and Shor’s algorithm

I This is used in Shor’s algorithm by noticing

1√
2t

2t−1∑
j=0

|j〉 |x jmodN〉 ≈ 1√
r2t

r−1∑
s=0

2t−1∑
j=0

e2πij s
r |j〉 |us〉

I Where

|us〉 =
1√
r

r−1∑
k=0

e
−2πisk

r |xkmodN〉

I Applying the inverse quantum Fourier transform to this state
will give

1√
r

r−1∑
s=0

| ˆ
(
s

r
)〉 |us〉

I so we can measure an integer result ϕ = (ŝ
r)

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

The continued fractions algorithm

I We know ϕ upto n bits, and can use the continued fractions
algorithm for ϕ

2n to calculate r
I The continued fractions algorithm is an efficient classical

algorithm
I So, to recap, the quantum part of Shor’s algorithm can be

given as the following circuit

|0〉n H⊗n
|k〉

• QFT † ?>=<89:;M ϕ = ˆ(s
r)

|1〉m akmodN

I the convergent of the continued fraction for ϕ
2n gives s

r
I As we only know ϕ to n bits, we need to choose n as at least

2m + 1 + dlog(2 + 1
2ε)e so we have probability 1− ε of finding

r , where m is the number of bits needed to specify N
Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I Lets look at a concrete example...
I Factorising N = 15 using Shor’s algorithm
I Step 1: pick a random number (b) that is coprime to 15
I This could be any of 2, 4, 7, 8, 11, 13, or 14
I Lets choose b = 7
I Step 2: construct the unitary for the function

f (x) = 7x (mod 15)
I To do this, we need to specify m and n, the number of qubits

in each register.
I m is the number of bits needed to specify N, so m = 4
I n = 2m + 1 + dlog(2 + 1

2ε)e
I For an error of at most ε = 1

4 we can calculate
n = 2 ∗ 4 + 1 + dlog(2 + 1

2
4

)e = 8 + 1 + 2 = 11

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I Step 3: Apply the unitary f (x) = 7x (mod 15) to the state
1√
2n

∑2n−1
k=0 |k〉n |0〉m

I leaving the state 1√
2n

∑2n−1
k=0 |k〉n |7k (mod 15)〉m

I =
1√
2n [|0〉 |1〉+|1〉 |7〉+|2〉 |4〉+|3〉 |13〉+|4〉 |1〉+. . .+|2047〉 |13〉]

I Step 4: Measure the second register

I This will leave (with equal probability) either 1, 7, 4, or 13

I In this instance, we measured a 4

I Leaving the state
√

4
2n [|2〉+ |6〉+ . . .+ |2046〉]

I Step 5: Apply the inverse QFT and measure the result

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I The inverse QFT leaves the following probability distribution

I We can see that each of the states 0, 512, 1024, or 1536 could
be measured with almost probability 1

4 each

I In this instance, we measured ϕ = 1536

I We can now calculate r , as s
r is the convergent of the

continued fraction for 1536
2048

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Factorising 15

I The convergent is 3
4 so we have r = 4

I Step 6: Check properties of r , and calculate the factors
I 4 is even, so that is ok
I x = 7

4
2 (mod15) = 4

I x + 1 6= 0(mod15), so that is ok

I Factors are gcd(x − 1, 15) and gcd(x + 1, 15)
I gcd(x − 1, 15) = gcd(3, 15) = 3
I gcd(x + 1, 15) = gcd(5, 15) = 5

I So, the factors of 15 are 3 and 5

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

Fourier transforms
The discrete Fourier transform

The quantum Fourier transform
Shor’s Algorithm

Thank you

I Remember, presentations start next week...

I Attendance will be taken!

I Submission deadline for your paper is 12:00 (midday) this
Friday

I I will make copies of all the papers available after this

I Labs on Thursday as usual...

I Thank you.

Dr. Alexander S. Green G53NSC and G54NSC Non-Standard Computation

	Reversible Arithmetic
	Reversible Arithmetic
	Addition and Subtraction
	Modular addition
	Modular addition
	Modular multiplication
	Modular exponentiation

	The Quantum Fourier Transform
	Fourier transforms
	The discrete Fourier transform
	The quantum Fourier transform
	Shor's Algorithm

