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Introduction

• We would like to model Quantum Computations.

• The QIO Monad, can be thought of as a register of
Qubits that plugs into your classical computer.

• It provides a framework for constructing quantum
computations...

• ... and simulates the running of these computations.
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Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.
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Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a
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Haskell and Monads

• Haskell is a pure functional programming language, so
any computations that may involve side effects make
use of Monads.

• Monads are defined by a return function, and a bind
function denoted ( >>= )

•

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

• Haskell provides the do notation to make monadic
programming easier.
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• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo
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• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo
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’do’ notation

• IO in Haskell takes place in the IO Monad.

• For example, echoing a character to the screen

getChar :: IO Char

putChar :: Char → IO ()

•
echo :: IO ()

echo = getChar >>= (λc → putChar c) > >echo

• or in do notation

•

echo = do c ← getChar

putChar c

echo
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The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.
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The QIO Monad

• The QIO Monad has been designed so that Quantum
computations can be defined within Haskell.

• The do notation provided by Haskell is very useful for
this purpose.

•

trueBit :: QIO Bool

trueBit = do qb ← mkQbit True

x ← measQbit qb

return x
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• What can we do in the QIO Monad?
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API

• What can we do in the QIO Monad?

• mkQbit :: Bool → QIO Qbit

• When initialising a qubit the user must define which of
the base states, True or False (|0〉 or |1〉), to initialise it
into.

• measQbit :: Qbit → QIO Bool

• The measurement of a qubit always results in a
boolean value.

• Wht else can be done with these qubits?
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Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.
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Unitaries.

• It is possible to construct unitary operators, and apply
them to the relevent qubits.

• applyU :: U → QIO ()

• There are 5 unitary constructors that are available:

• unot :: Qbit → U

which will rotate the given qubit by 180o as in the Not
rotation.

•

(

0 1

1 0

)
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Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.
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Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)
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Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)

• uphase :: Qbit → Float → U

which will rotate the given qubit by the given phase
change (φ).
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Unitaries..

• uhad :: Qbit → U

which will rotate the given qubit by 90o as in the
Hadamard rotation.

• 1
√

2

(

1 1

1 − 1

)

• uphase :: Qbit → Float → U

which will rotate the given qubit by the given phase
change (φ).

•

(

1 0

0 e2πiφ

)
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Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.
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Unitaries...

• swap :: Qbit → Qbit → U

which simply swaps the two given qubits.

• cond :: Qbit → (Bool → U )→ U

which given a control qubit, will conditionally do the
corresponding unitary given by the function.
(The control qubit must not be effected by the
unitaries)

• It is this conditional operation that can be used to
entangle qubits.

• The U datatype of unitaries, also forms a Monoid
meaning there is an append operation for combining
uniatries sequentially.
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Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.
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Running Quantum Computations?

• Along with creating quantum computations, the QIO
Monad also provides two ways of evaluating them.

• run :: QIO a → IO a

• Running a quantum computation returns a
probabilistic result for each measurement.

• sim :: QIO a → Prob a

• Simulating a quantum computation returns a
probability distribution of all the possible
measurement outcomes.

• We would also like to be able to display the internal
state of the system at any time, possibly by showing
the complex amplitudes for each base state.
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Computations.

qPlus :: QIO Qbit

qPlus = do qa ← mkQbit False

applyU (uhad qa)

return qa

randBit :: QIO Bool

randBit = do qa ← qPlus

x ← measQbit qa

return x
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Computations..

share :: Qbit → QIO Qbit

share qa = do qb ← mkQbit False

applyU (cond qa (λa → if a then (unot qb)

else mempty))

return qb

bell :: QIO (Qbit ,Qbit)

bell = do qa ← qPlus

qb ← share qa

return (qa, qb)
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Computations..

test bell :: QIO (Bool ,Bool)

test bell = do qb ← bell

b ← measQ qb

return b
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Teleportation.

alice :: Qbit → Qbit → QIO (Bool ,Bool)

alice aq bsq = do applyU (cond aq

(λa → if a then (unot bsq)

else mempty))

applyU (uhad aq)

cd ← measQ (aq , bsq)

return cd
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Teleportation..

uZ :: Qbit → U

uZ qb = (uphase qb 0.5)

bobsU :: (Bool ,Bool)→ Qbit → U

bobsU (False,False) qb = mempty

bobsU (False,True) qb = (unot qb)

bobsU (True,False) qb = (uZ qb)

bobsU (True,True) qb = ((unot qb) ‘mappend ‘ (uZ qb))

bob :: Qbit → (Bool ,Bool)→ QIO Qbit

bob bsq cd = do applyU (bobsU cd bsq)

return bsq
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Teleportation...

teleportation :: Qbit → QIO Qbit

teleportation iq = do (bsq1 , bsq2 )← bell

cd ← alice iq bsq1

tq ← bob bsq2 cd

return tq
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Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.
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Qdata.

• There is a symmetry between initialising a qubit, and
measuring a qubit.

• Larger quantum data structures can be defined using
qubits, in the same way classical data structures are
defined using bits.

• We have defined a class of quantum data types, Qdata

For which an mkQ initialisation function and a measQ

measurement function must be defined, between the
quantum datatype and its classical counter-part.

•

instance Qdata Bool Qbit where

mkQ = mkQbit

measQ = measQbit

The Quantum IO Monad – p.17/19



Qdata..

instance (Qdata a qa,Qdata b qb)

⇒ Qdata (a, b) (qa, qb) where

mkQ (a, b) = do qa ← mkQ a

qb ← mkQ b

return (qa, qb)

measQ (qa, qb) = do a ← measQ qa

b ← measQ qb

return (a, b)
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Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.
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• We are going to use the QIO Monad to start reasoning
about quantum computation in general.

• We are going to model other forms of quantum
computer within the QIO Monad, such as the
Measurment based model of quantum computations.

The Quantum IO Monad – p.19/19



Further Work

• We are going to implement some of the famous
quantum algorithms, such as Shor’s quantum
factorisation algorithm.

• We are going to use the QIO Monad to start reasoning
about quantum computation in general.

• We are going to model other forms of quantum
computer within the QIO Monad, such as the
Measurment based model of quantum computations.

• Thank you all for listening!
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